Towards quantum-enhanced long-baseline optical/near-IR interferometry
Jayadev K. Rajagopal, Ryan M. Lau, Isack Padilla, Stephen T. Ridgway, Chaohan Cui, Brittany McClinton, Aqil Sajjad, Stuartt Corder, Mark Rawlings, Fredrik Rantakyro, J. Gabriel Richardson, Amit Ashok, Saikat Guha
arXiv:2407.06302v1 Announce Type: new
Abstract: Microarcsecond resolutions afforded by an optical-NIR array with kilometer-baselines would enable breakthrough science. However significant technology barriers exist in transporting weakly coherent photon states over these distances: primarily photon loss and phase errors. Quantum telescopy, using entangled states to link spatially separated apertures, offers a possible solution to the loss of photons. We report on an initiative launched by NSF NOIRLab in collaboration with the Center for Quantum Networks and Arizona Quantum Initiative at the University of Arizona, Tucson, to explore these concepts further. A brief description of the quantum concepts and a possible technology roadmap towards a quantum-enhanced very long baseline optical-NIR interferometric array is presented. An on-sky demonstration of measuring spatial coherence of photons with apertures linked through the simplest Gottesman protocol over short baselines and with limited phase fluctuations is envisaged as the first step.arXiv:2407.06302v1 Announce Type: new
Abstract: Microarcsecond resolutions afforded by an optical-NIR array with kilometer-baselines would enable breakthrough science. However significant technology barriers exist in transporting weakly coherent photon states over these distances: primarily photon loss and phase errors. Quantum telescopy, using entangled states to link spatially separated apertures, offers a possible solution to the loss of photons. We report on an initiative launched by NSF NOIRLab in collaboration with the Center for Quantum Networks and Arizona Quantum Initiative at the University of Arizona, Tucson, to explore these concepts further. A brief description of the quantum concepts and a possible technology roadmap towards a quantum-enhanced very long baseline optical-NIR interferometric array is presented. An on-sky demonstration of measuring spatial coherence of photons with apertures linked through the simplest Gottesman protocol over short baselines and with limited phase fluctuations is envisaged as the first step.

Comments are closed, but trackbacks and pingbacks are open.