Comparing Minimal and Non-Minimal Quintessence Models to 2025 DESI Data
Husam Adam, Mark P. Hertzberg, Daniel Jim’enez-Aguilar, Iman Khan
arXiv:2509.13302v2 Announce Type: replace
Abstract: In this work we examine the 2025 DESI analysis of dark energy, which suggests that dark energy is evolving in time with an increasing equation of state $w$. We explore a wide range of quintessence models, described by a potential function $V(varphi)$, including: quadratic potentials, quartic hilltops, double wells, cosine functions, Gaussians, inverse powers. We find that while some provide improvement in fitting to the data, compared to a cosmological constant, the improvement is only modest. We then consider non-minimally coupled scalars which can help fit the data by providing an effective equation of state that temporarily obeys $w-1$. Since the scalar is very light, this leads to a fifth force and to time evolution in the effective gravitational strength, which are both tightly constrained by tests of gravity. For a very narrow range of carefully selected non-minimal couplings we are able to evade these bounds, but not for generic values.arXiv:2509.13302v2 Announce Type: replace
Abstract: In this work we examine the 2025 DESI analysis of dark energy, which suggests that dark energy is evolving in time with an increasing equation of state $w$. We explore a wide range of quintessence models, described by a potential function $V(varphi)$, including: quadratic potentials, quartic hilltops, double wells, cosine functions, Gaussians, inverse powers. We find that while some provide improvement in fitting to the data, compared to a cosmological constant, the improvement is only modest. We then consider non-minimally coupled scalars which can help fit the data by providing an effective equation of state that temporarily obeys $w-1$. Since the scalar is very light, this leads to a fifth force and to time evolution in the effective gravitational strength, which are both tightly constrained by tests of gravity. For a very narrow range of carefully selected non-minimal couplings we are able to evade these bounds, but not for generic values.
2025-10-10
Comments are closed, but trackbacks and pingbacks are open.