SN 2018ijp: the explosion of a stripped-envelope star within a dense H-rich shell?. (arXiv:2009.03331v3 [astro-ph.HE] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Tartaglia_L/0/1/0/all/0/1">L. Tartaglia</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Sollerman_J/0/1/0/all/0/1">J. Sollerman</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Barbarino_C/0/1/0/all/0/1">C. Barbarino</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Taddia_F/0/1/0/all/0/1">F. Taddia</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Mason_E/0/1/0/all/0/1">E. Mason</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Berton_M/0/1/0/all/0/1">M. Berton</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Taggart_K/0/1/0/all/0/1">K. Taggart</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bellm_E/0/1/0/all/0/1">E. C. Bellm</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+De_K/0/1/0/all/0/1">K. De</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Frederick_S/0/1/0/all/0/1">S. Frederick</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Fremling_C/0/1/0/all/0/1">C. Fremling</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Gal_Yam_A/0/1/0/all/0/1">A. Gal-Yam</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Golkhou_V/0/1/0/all/0/1">V. Z. Golkhou</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Graham_M/0/1/0/all/0/1">M. Graham</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Ho_A/0/1/0/all/0/1">A. Y. Q. Ho</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Hung_T/0/1/0/all/0/1">T. Hung</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kaye_S/0/1/0/all/0/1">S. Kaye</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kim_Y/0/1/0/all/0/1">Y. L. Kim</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Laher_R/0/1/0/all/0/1">R. R. Laher</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Masci_F/0/1/0/all/0/1">F. J. Masci</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Perley_D/0/1/0/all/0/1">D. A. Perley</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Porter_M/0/1/0/all/0/1">M. D. Porter</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Reiley_D/0/1/0/all/0/1">D. J. Reiley</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Riddle_R/0/1/0/all/0/1">R. Riddle</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Rusholme_B/0/1/0/all/0/1">B. Rusholme</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Soumagnac_M/0/1/0/all/0/1">M. T. Soumagnac</a>,Read More →

Deconvolving Pulsar Signals with Cyclic Spectroscopy: A Systematic Evaluation. (arXiv:2008.10562v4 [astro-ph.HE] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Dolch_T/0/1/0/all/0/1">Timothy Dolch</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Stinebring_D/0/1/0/all/0/1">Daniel R. Stinebring</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Jones_G/0/1/0/all/0/1">Glenn Jones</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Zhu_H/0/1/0/all/0/1">Hengrui Zhu</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Lynch_R/0/1/0/all/0/1">Ryan S. Lynch</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Cohen_T/0/1/0/all/0/1">Tyler Cohen</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Demorest_P/0/1/0/all/0/1">Paul B. Demorest</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Lam_M/0/1/0/all/0/1">Michael T. Lam</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Levin_L/0/1/0/all/0/1">Lina Levin</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+McLaughlin_M/0/1/0/all/0/1">Maura A. McLaughlin</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Palliyaguru_N/0/1/0/all/0/1">Nipuni T. Palliyaguru</a> Radio pulsar signals are significantly perturbed by their propagation through the ionized interstellar medium. In addition to the frequency-dependent pulse times of arrival due to dispersion, pulse shapes are also distorted and shifted, having been scattered by the inhomogeneous interstellar plasma, affecting pulse arrival times. Understanding the degree to which scattering affects pulsar timingRead More →

The nuclear symmetry energy from neutron skins and pure neutron matter in a Bayesian framework. (arXiv:2008.00042v2 [nucl-th] UPDATED) <a href="http://arxiv.org/find/nucl-th/1/au:+Newton_W/0/1/0/all/0/1">William G. Newton</a>, <a href="http://arxiv.org/find/nucl-th/1/au:+Crocombe_G/0/1/0/all/0/1">Gabriel Crocombe</a> We present an inference of the nuclear symmetry energy magnitude $J$, the slope $L$ and the curvature $K_{rm sym}$ by combining neutron skin data on Ca, Pb and Sn isotopes and our best theoretical information about pure neutron matter (PNM). A Bayesian framework is used to consistently incorporate prior knowledge of the PNM equation of state from chiral effective field theory calculations. Neutron skins are modeled in a Hartree-Fock approach using an extended Skyrme energy-density functional which allows for independentRead More →

Dark Energy Survey Year 1 Results: Constraining Baryonic Physics in the Universe. (arXiv:2007.15026v2 [astro-ph.CO] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Huang_H/0/1/0/all/0/1">Hung-Jin Huang</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Eifler_T/0/1/0/all/0/1">Tim Eifler</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Mandelbaum_R/0/1/0/all/0/1">Rachel Mandelbaum</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bernstein_G/0/1/0/all/0/1">Gary M. Bernstein</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Chen_A/0/1/0/all/0/1">Anqi Chen</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Choi_A/0/1/0/all/0/1">Ami Choi</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Garcia_Bellido_J/0/1/0/all/0/1">Juan Garc&#xed;a-Bellido</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Huterer_D/0/1/0/all/0/1">Dragan Huterer</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Krause_E/0/1/0/all/0/1">Elisabeth Krause</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Rozo_E/0/1/0/all/0/1">Eduardo Rozo</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Singh_S/0/1/0/all/0/1">Sukhdeep Singh</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bridle_S/0/1/0/all/0/1">Sarah Bridle</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+DeRose_J/0/1/0/all/0/1">Joseph DeRose</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Elvin_Pole_J/0/1/0/all/0/1">Jack Elvin-Pole</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Fang_X/0/1/0/all/0/1">Xiao Fang</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Friedrich_O/0/1/0/all/0/1">Oliver Friedrich</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Gatti_M/0/1/0/all/0/1">Marco Gatti</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Gaztanaga_E/0/1/0/all/0/1">Enrique Gaztanaga</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Gruen_D/0/1/0/all/0/1">Daniel Gruen</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Hartley_W/0/1/0/all/0/1">Will Hartley</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Hoyle_B/0/1/0/all/0/1">Ben Hoyle</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Jarvis_M/0/1/0/all/0/1">Mike Jarvis</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+MacCrann_N/0/1/0/all/0/1">Niall MacCrann</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Rau_M/0/1/0/all/0/1">Markus Rau</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Miranda_V/0/1/0/all/0/1">Vivian Miranda</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Prat_J/0/1/0/all/0/1">Judit Prat</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Sanchez_C/0/1/0/all/0/1">Carles S&#xe1;nchez</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Samuroff_S/0/1/0/all/0/1">Simon Samuroff</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Troxel_M/0/1/0/all/0/1">Michael Troxel</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Zuntz_J/0/1/0/all/0/1">JoeRead More →

The Relativistic Jet Dichotomy and the End of the Blazar Sequence. (arXiv:2007.12661v2 [astro-ph.GA] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Keenan_M/0/1/0/all/0/1">Mary Keenan</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Meyer_E/0/1/0/all/0/1">Eileen T. Meyer</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Georganopoulos_M/0/1/0/all/0/1">Markos Georganopoulos</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Reddy_K/0/1/0/all/0/1">Karthik Reddy</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+French_O/0/1/0/all/0/1">Omar J. French</a> Our understanding of the unification of jetted AGN has evolved greatly as jet samples have increased in size. Here, based on the largest-ever sample of over 2000 well-sampled jet spectral energy distributions, we examine the synchrotron peak frequency — peak luminosity plane, and find little evidence for the anti-correlation known as the blazar sequence. Instead, we find strong evidence for a dichotomy in jets, between those associated with efficient or `quasar-mode’ accretion (strong/type IIRead More →

Results of search for magnetized quark-nugget dark matter from radial impacts on Earth. (arXiv:2007.04826v3 [astro-ph.EP] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+VanDevender_J/0/1/0/all/0/1">J. Pace VanDevender</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Schmitt_R/0/1/0/all/0/1">Robert G. Schmitt</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+McGinley_N/0/1/0/all/0/1">Niall McGinley</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Duggan_D/0/1/0/all/0/1">David G. Duggan</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+McGinty_S/0/1/0/all/0/1">Seamus McGinty</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+VanDevender_A/0/1/0/all/0/1">Aaron P. VanDevender</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Wilson_P/0/1/0/all/0/1">Peter Wilson</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Dixon_D/0/1/0/all/0/1">Deborah Dixon</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Girard_H/0/1/0/all/0/1">Helen Girard</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+McRae_J/0/1/0/all/0/1">Jacquelyn McRae</a> Magnetized Quark Nuggets (MQNs) are a recently proposed dark-matter candidate consistent with the Standard Model and with Tatsumi’s theory of quark-nugget cores in magnetars. Previous publications have covered their formation in the early universe, aggregation into a broad mass distribution before they can decay by the weak force, interaction with normal matter through their magnetopause,Read More →

Alignment of irregular grains by radiative torques: efficiency study. (arXiv:2006.16563v2 [astro-ph.GA] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Herranen_J/0/1/0/all/0/1">Joonas Herranen</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Lazarian_A/0/1/0/all/0/1">A. Lazarian</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Hoang_T/0/1/0/all/0/1">Thiem Hoang</a> We study the efficiency of grain alignment by radiative torques (RATs) for an ensemble of irregular grains. The grains are modeled as ensembles of oblate and prolate spheroids, deformed as Gaussian random ellipsoids, and their scattering interactions are solved using numerically exact methods. We define the fraction of the grains that both rotate fast and demonstrate perfect alignment with grain long axes perpendicular to the magnetic field. We demonstrate that for typical interstellar conditions the degree of alignment arising from the RAT mechanism isRead More →

Say hello to Algol’s new companion candidates. (arXiv:2005.13360v3 [astro-ph.SR] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Jetsu_L/0/1/0/all/0/1">L. Jetsu</a> Constant orbital period ephemerides of eclipsing binaries give the computed eclipse epochs (C). These ephemerides based on the old data can not accurately predict the observed future eclipse epochs (O). Predictability can be improved by removing linear or quadratic trends from the O-C data. Additional companions in an eclipsing binary system cause light-time travel effects that are observed as strictly periodic O-C changes. Recently, Hajdu et al. (2019) estimated that the probability for detecting the periods of two new companions from the O-C data is only 0.00005. We apply the new DiscreteRead More →

Redshift evolution of the underlying type Ia supernova stretch distribution. (arXiv:2005.09441v2 [astro-ph.CO] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Nicolas_N/0/1/0/all/0/1">N. Nicolas</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Rigault_M/0/1/0/all/0/1">M. Rigault</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Copin_Y/0/1/0/all/0/1">Y. Copin</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Graziani_R/0/1/0/all/0/1">R. Graziani</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Aldering_G/0/1/0/all/0/1">G. Aldering</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Briday_M/0/1/0/all/0/1">M. Briday</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Nordin_J/0/1/0/all/0/1">J. Nordin</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kim_Y/0/1/0/all/0/1">Y.-L. Kim</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Perlmutter_S/0/1/0/all/0/1">S. Perlmutter</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Smith_M/0/1/0/all/0/1">M. Smith</a> The detailed nature of type Ia supernovae (SNe Ia) remains uncertain, and as survey statistics increase, the question of astrophysical systematic uncertainties arises, notably that of the evolution of SN Ia populations. We study the dependence on redshift of the SN Ia light-curve stretch, a purely intrinsic SN property, to probe its potential redshift drift. The SN stretch has been shown toRead More →

Astraeus II: Quantifying the impact of cosmic variance during the Epoch of Reionization. (arXiv:2004.11096v2 [astro-ph.GA] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Ucci_G/0/1/0/all/0/1">Graziano Ucci</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Dayal_P/0/1/0/all/0/1">Pratika Dayal</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Hutter_A/0/1/0/all/0/1">Anne Hutter</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Yepes_G/0/1/0/all/0/1">Gustavo Yepes</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Gottlober_S/0/1/0/all/0/1">Stefan Gottl&#xf6;ber</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Legrand_L/0/1/0/all/0/1">Laurent Legrand</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Pentericci_L/0/1/0/all/0/1">Laura Pentericci</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Castellano_M/0/1/0/all/0/1">Marco Castellano</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Choudhury_T/0/1/0/all/0/1">Tirthankar Roy Choudhury</a> Next generation telescopes such as the James Webb Space Telescope (JWST) and the Nancy Grace Roman Space Telescope (NGRST) will enable us to study the first billion years of our Universe in unprecedented detail. In this work we use the ASTRAEUS (semi-numerical rAdiative tranSfer coupling of galaxy formaTion and Reionization in N-body dArk mattEr simUlationS) framework, that couples galaxy formation andRead More →

Bounds on the Horndeski Gauge-Gravity Coupling. (arXiv:2002.11932v2 [astro-ph.CO] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Allahyari_A/0/1/0/all/0/1">Alireza Allahyari</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Gorji_M/0/1/0/all/0/1">Mohammad Ali Gorji</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Mukohyama_S/0/1/0/all/0/1">Shinji Mukohyama</a> The Horndeski gauge-gravity coupling is the leading non-minimal interaction between gravity and gauge bosons, and it preserves all the symmetries and the number of physical degrees of freedom of the standard model of particle physics and general relativity. In this paper we study the effects of the non-minimal interaction in astronomy and cosmology, and obtain upper bounds on the associated dimensionless coupling constant $lambda$. From the modification of equations of motion of gauge bosons applied to compact astronomical objects, we find upper bounds $|lambda| lesssim 10^{88}$,Read More →

Core-collapse supernovae stymie secret neutrino interactions. (arXiv:1912.09115v2 [astro-ph.HE] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Shalgar_S/0/1/0/all/0/1">Shashank Shalgar</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Tamborra_I/0/1/0/all/0/1">Irene Tamborra</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bustamante_M/0/1/0/all/0/1">Mauricio Bustamante</a> Beyond-the-Standard-Model interactions of neutrinos among themselves — {it secret interactions} — in the supernova core may prevent the shock revival, halting the supernova explosion. Besides, if supernova neutrinos en route to Earth undergo secret interactions with relic neutrinos, the neutrino burst reaching Earth may be down-scattered in energy, falling below the detection threshold. We probe secret neutrino interactions through supernova neutrinos and apply our findings to the supernova SN 1987A. We place the most stringent bounds on flavor-universal secret interactions occurring through a new mediator with massRead More →

Effects of oscillating spacetime metric background on a complex scalar field and formation of topological vortices. (arXiv:1911.13216v4 [hep-th] UPDATED) <a href="http://arxiv.org/find/hep-th/1/au:+Dave_S/0/1/0/all/0/1">Shreyansh S. Dave</a>, <a href="http://arxiv.org/find/hep-th/1/au:+Digal_S/0/1/0/all/0/1">Sanatan Digal</a> We study the time evolution of a complex scalar field in the symmetry broken phase in the presence of oscillating spacetime metric background. In our (2+1)-dimensional simulations, we show that the spacetime oscillations can excite an initial field configuration, which ultimately leads to the formation of topological vortices in the system. At late times, field configuration achieves a disordered state. A detailed study of the momentum and frequency modes of the field reveals that these field excitations are drivenRead More →

Voyage through the Hidden Physics of the Cosmic Web. (arXiv:1908.01778v2 [astro-ph.CO] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Simionescu_A/0/1/0/all/0/1">A. Simionescu</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Ettori_S/0/1/0/all/0/1">S. Ettori</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Werner_N/0/1/0/all/0/1">N. Werner</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Nagai_D/0/1/0/all/0/1">D. Nagai</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Vazza_F/0/1/0/all/0/1">F. Vazza</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Akamatsu_H/0/1/0/all/0/1">H. Akamatsu</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Pinto_C/0/1/0/all/0/1">C. Pinto</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Plaa_J/0/1/0/all/0/1">J. de Plaa</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Wijers_N/0/1/0/all/0/1">N. Wijers</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Nelson_D/0/1/0/all/0/1">D. Nelson</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Pointecouteau_E/0/1/0/all/0/1">E. Pointecouteau</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Pratt_G/0/1/0/all/0/1">G. W. Pratt</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Spiga_D/0/1/0/all/0/1">D. Spiga</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Vacanti_G/0/1/0/all/0/1">G. Vacanti</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Lau_E/0/1/0/all/0/1">E. Lau</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Rossetti_M/0/1/0/all/0/1">M. Rossetti</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Gastaldello_F/0/1/0/all/0/1">F. Gastaldello</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Biffi_V/0/1/0/all/0/1">V. Biffi</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bulbul_E/0/1/0/all/0/1">E. Bulbul</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Collon_M/0/1/0/all/0/1">M. J. Collon</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Herder_J/0/1/0/all/0/1">J. W. den Herder</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Eckert_D/0/1/0/all/0/1">D. Eckert</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Fraternali_F/0/1/0/all/0/1">F. Fraternali</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Mingo_B/0/1/0/all/0/1">B. Mingo</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Pareschi_G/0/1/0/all/0/1">G. Pareschi</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Pezzulli_G/0/1/0/all/0/1">G. Pezzulli</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Reiprich_T/0/1/0/all/0/1">T. H. Reiprich</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Schaye_J/0/1/0/all/0/1">J. Schaye</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Walker_S/0/1/0/all/0/1">S. A.Read More →

Big Bang nucleosynthesis in a weakly non-ideal plasma. (arXiv:1812.09472v2 [astro-ph.CO] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Jang_D/0/1/0/all/0/1">Dukjae Jang</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kwon_Y/0/1/0/all/0/1">Youngshin Kwon</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kwak_K/0/1/0/all/0/1">Kyujin Kwak</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Cheoun_M/0/1/0/all/0/1">Myung-Ki Cheoun</a> We propose a correction of the standard Big Bang nucleosynthesis (BBN) scenario to resolve the primordial lithium problem by considering a possibility that the primordial plasma can deviate from the ideal state. In the standard BBN, the primordial plasma is assumed to be ideal, with particles and photons satisfying the Maxwell-Boltzmann and Planck distribution, respectively. We suggest that this assumption of the primordial plasma being ideal might oversimplify the early Universe and cause the lithium problem. We find that deviation of photonRead More →

Probing Fundamental Physics with Gravitational Waves. (arXiv:2010.04745v2 [gr-qc] UPDATED) <a href="http://arxiv.org/find/gr-qc/1/au:+Carson_Z/0/1/0/all/0/1">Zack Carson</a> The explosive coalescence of two black holes 1.3 billion light years away has for the very first time allowed us to peer into the extreme gravity region of spacetime surrounding these events. With these maximally compact objects reaching speeds up to 60% the speed of light, collision events such as these create harsh spacetime environments where the fields are strong, non-linear, and highly dynamical — a place yet un-probed in human history. On September 14, 2015, the iconic chirp signal from such an event was registered simultaneously by both of the Laser InterferometerRead More →

3D Simulations and MLT: II. Onsager’s Ideal Turbulence. (arXiv:1810.04659v4 [astro-ph.SR] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Arnett_W/0/1/0/all/0/1">W. David Arnett</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Hirschi_R/0/1/0/all/0/1">Raphael Hirschi</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Campbell_S/0/1/0/all/0/1">Simon W. Campbell</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Mocak_M/0/1/0/all/0/1">Miroslav Moc&#xe1;k</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Georgy_C/0/1/0/all/0/1">Cyril Georgy</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Meakin_C/0/1/0/all/0/1">Casey Meakin</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Cristini_A/0/1/0/all/0/1">Andrea Cristini</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Scott_L/0/1/0/all/0/1">Laura J. A. Scott</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kaiser_E/0/1/0/all/0/1">Etienne A. Kaiser</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Viallet_M/0/1/0/all/0/1">Maxime Viallet</a> We simulate stellar convection at high Reynolds number (Re$lesssim$7000) with causal time stepping but no explicit viscosity. We use the 3D Euler equations with shock capturing (Colella & Woodward 1984). Anomalous dissipation of turbulent kinetic energy occurs as an emergent feature of advection (“Onsager damping”), caused by the moderate shocks which terminate the turbulent kinetic energy spectrum; see alsoRead More →

Termination shock thermal processes as a possible source for the CMB low-order multipole anomalies: updated with observations. (arXiv:0906.1752v2 [astro-ph.CO] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Sharpe_H/0/1/0/all/0/1">H.N.Sharpe</a> We discuss the possibility that the observed low-order multipole features of the cosmic microwave background radiation (CMB) all originate in the termination shock (TS) region of the heliosheath that surrounds the solar system. If the intrinsic CMB spectrum is assumed to be a pure monopole (2.73K) then thermodynamic processes occurring within the plasma region of the TS could imprint the observed power spectrum of the low-order multipoles and their alignment (the so-called “axis of evil”) onto this background isotropic CMB. Conditions are outlinedRead More →

Evaporation of dark matter from celestial bodies. (arXiv:2104.12757v1 [hep-ph]) <a href="http://arxiv.org/find/hep-ph/1/au:+Garani_R/0/1/0/all/0/1">Raghuveer Garani</a> (INFN, Florence), <a href="http://arxiv.org/find/hep-ph/1/au:+Palomares_Ruiz_S/0/1/0/all/0/1">Sergio Palomares-Ruiz</a> (IFIC, Valencia U. – CSIC) Scatterings of galactic dark matter (DM) particles with the constituents of celestial bodies could result in their accumulation within these objects. Nevertheless, the finite temperature of the medium sets a minimum mass, the evaporation mass, that DM particles must have in order to remain trapped. DM particles below this mass are very likely to scatter to speeds higher than the escape velocity, so they would be kicked out of the capturing object and escape. Here, we compute the DM evaporation mass for allRead More →

Smallest, Closest Black Hole Ever Discovered is Only 1,500 Light-Years Away In theory, a black hole is easy to make. Simply take a lump of matter, squeeze it into a sphere with a radius smaller than the Schwarzschild radius, and poof! You have a black hole. In practice, things aren’t so easy. When you squeeze matter, it pushes back, so it takes a star’s worth of weight to squeeze hard enough. Because of this, it’s generally thought that even the smallest black holes must be at least 5 solar masses in size. But a recent study shows the lower bound might be even smaller. TheRead More →