The Carbon Isotopic Ratio and Planet Formation
Edwin A. Bergin, Arthur Bosman, Richard Teague, Jenny Calahan, Karen Willacy, L. Ilsedore Cleeves, Kamber Schwarz, Ke Zhang, Simon Bruderer
arXiv:2403.09739v1 Announce Type: new
Abstract: We present the first detection of 13CCH in a protoplanetary disk (TW Hya). Using observations of C2H we measure CCH/13CCH = 65 +/- 20 in gas with a CO isotopic ratio of 12CO/13CO = 21 +/- 5 (Yoshida et al. 2022a). The TW Hya disk exhibits a gas phase C/O that exceeds unity and C2H is the tracer of this excess carbon. We confirm that the TW Hya gaseous disk exhibits two separate carbon isotopic reservoirs as noted previously (Yoshida et al. 2022a). We explore two theoretical solutions for the development of this dichotomy. One model represents TW Hya today with a protoplanetary disk exposed to a cosmic ray ionization rate that is below interstellar as consistent with current estimates. We find that this model does not have sufficient ionization in cold (T arXiv:2403.09739v1 Announce Type: new
Abstract: We present the first detection of 13CCH in a protoplanetary disk (TW Hya). Using observations of C2H we measure CCH/13CCH = 65 +/- 20 in gas with a CO isotopic ratio of 12CO/13CO = 21 +/- 5 (Yoshida et al. 2022a). The TW Hya disk exhibits a gas phase C/O that exceeds unity and C2H is the tracer of this excess carbon. We confirm that the TW Hya gaseous disk exhibits two separate carbon isotopic reservoirs as noted previously (Yoshida et al. 2022a). We explore two theoretical solutions for the development of this dichotomy. One model represents TW Hya today with a protoplanetary disk exposed to a cosmic ray ionization rate that is below interstellar as consistent with current estimates. We find that this model does not have sufficient ionization in cold (T