Surface Brightness Fluctuations in Two SPT clusters: a Pilot Study
Charles E. Romero, Massimo Gaspari, Gerrit Schellenberger, Bradford A. Benson, Lindsey E. Bleem, Esra Bulbul, Matthias Klein, Ralph Kraft, Paul Nulsen, Christian L. Reichardt, Laura Salvati, Taweewat Somboonpanyakul, Yuanyuan Su
arXiv:2404.04373v1 Announce Type: new
Abstract: Studies of surface brightness fluctuations in the intracluster medium (ICM) present an indirect probe of turbulent properties such as the turbulent velocities, injection scales, and the slope of the power spectrum of fluctuations towards smaller scales. With the advancement of Sunyaev-Zel’dovich (SZ) studies and surveys relative to X-ray observations, we seek to investigate surface brightness fluctuations in a sample of SPT-SZ clusters which also have archival textit{XMM-Newton} data. Here we present a pilot study of two typical clusters in that sample: SPT-CLJ0232-4421 and SPT-CLJ0638-5358. We infer injection scales larger than 500 kpc in both clusters and Mach numbers $approx 0.5$ in SPT-CLJ0232-4421 and Mach numbers $approx 0.6 – 1.6$ in SPT-CLJ0638-5358, which has a known shock. We find hydrostatic bias values for $M_{500}$ less than 0.2 for SPT-CLJ0232-4421 and less than 0.1 for SPT-CLJ0638-5358. These results show the importance to assess its quantitative values via a detailed multiwavelength approach and suggest that the drivers of turbulence may occur at quite larger scales.arXiv:2404.04373v1 Announce Type: new
Abstract: Studies of surface brightness fluctuations in the intracluster medium (ICM) present an indirect probe of turbulent properties such as the turbulent velocities, injection scales, and the slope of the power spectrum of fluctuations towards smaller scales. With the advancement of Sunyaev-Zel’dovich (SZ) studies and surveys relative to X-ray observations, we seek to investigate surface brightness fluctuations in a sample of SPT-SZ clusters which also have archival textit{XMM-Newton} data. Here we present a pilot study of two typical clusters in that sample: SPT-CLJ0232-4421 and SPT-CLJ0638-5358. We infer injection scales larger than 500 kpc in both clusters and Mach numbers $approx 0.5$ in SPT-CLJ0232-4421 and Mach numbers $approx 0.6 – 1.6$ in SPT-CLJ0638-5358, which has a known shock. We find hydrostatic bias values for $M_{500}$ less than 0.2 for SPT-CLJ0232-4421 and less than 0.1 for SPT-CLJ0638-5358. These results show the importance to assess its quantitative values via a detailed multiwavelength approach and suggest that the drivers of turbulence may occur at quite larger scales.