Quasars with Flare/Eclipse-like Variability Identified in ZTF
Zhiyuan Zheng, Yong Shi, Shuowen Jin, H. Dannerbauer, Qiusheng Gu, Xin Li, Xiaoling Yu
arXiv:2404.10245v1 Announce Type: new
Abstract: Active galactic nuclei (AGNs) are known to exhibit optical/UV variability and most of them can be well modeled by the damped random walks. Physical processes that are not related to the accretion disk, such as tidal disruption events (TDE) or moving foreground dusty clouds, can cause flare-like and eclipse-like features in the optical light curve. Both long-term and high-cadence monitoring are needed to identify such features. By combining the Sloan Digital Sky Survey (SDSS), Panoramic Survey Telescope, and Rapid Response System (Pan-STARRS) with the Zwicky Transient Facility (ZTF) survey, we are able to identify a rare sample (11) out of the SDSS quasar catalog (around 83, 000). These quasars exhibit more or less constant brightness but show rapid optical variation in the ZTF DR2 epochs. To investigate the possible origins of these flare/eclipse-like variabilities, we propose the second epoch spectroscopic observations with the Gran Telescopio CANARIAS (GTC). We find that the change in accretion rate plays a significant role in these quasar variabilities. Among them, we identify two Changing-Look Active Galactic Nuclei (CL-AGN) candidates: SDSS J1427+2930 and SDSS J1420+3757. The luminosity change of the former may be caused by the enhanced SMBH accretion or the tidal disruption event, while the latter is more related to the change in the accretion rate.arXiv:2404.10245v1 Announce Type: new
Abstract: Active galactic nuclei (AGNs) are known to exhibit optical/UV variability and most of them can be well modeled by the damped random walks. Physical processes that are not related to the accretion disk, such as tidal disruption events (TDE) or moving foreground dusty clouds, can cause flare-like and eclipse-like features in the optical light curve. Both long-term and high-cadence monitoring are needed to identify such features. By combining the Sloan Digital Sky Survey (SDSS), Panoramic Survey Telescope, and Rapid Response System (Pan-STARRS) with the Zwicky Transient Facility (ZTF) survey, we are able to identify a rare sample (11) out of the SDSS quasar catalog (around 83, 000). These quasars exhibit more or less constant brightness but show rapid optical variation in the ZTF DR2 epochs. To investigate the possible origins of these flare/eclipse-like variabilities, we propose the second epoch spectroscopic observations with the Gran Telescopio CANARIAS (GTC). We find that the change in accretion rate plays a significant role in these quasar variabilities. Among them, we identify two Changing-Look Active Galactic Nuclei (CL-AGN) candidates: SDSS J1427+2930 and SDSS J1420+3757. The luminosity change of the former may be caused by the enhanced SMBH accretion or the tidal disruption event, while the latter is more related to the change in the accretion rate.