New AGN diagnostic diagrams based on the [OIII]$lambda 4363$ auroral line
G. Mazzolari, H. "Ubler, R. Maiolino, X. Ji, K. Nakajima, A. Feltre, J. Scholtz, F. D’Eugenio, M. Curti, M. Mignoli, A. Marconi
arXiv:2404.10811v1 Announce Type: new
Abstract: The James Webb Space Telescope (JWST) is revolutionizing our understanding of black holes formation and growth in the early Universe. However, JWST has also revealed that some of the classical diagnostics, such as the BPT diagrams and X-ray emission, often fail to identify narrow line TypeII active galactic nuclei (AGN) at high redshift. Here we present three new rest-frame optical diagnostic diagrams leveraging the [OIII]$lambda4363$ auroral line, which has been detected in several JWST spectra. Specifically, we show that high values of the [OIII]$lambda4363/$H$gamma$ ratio provide a sufficient (but not necessary) condition to identify the presence of an AGN, both based on empirical calibrations (using local and high-redshift sources) and a broad range of photoionization models. These diagnostics are able to separate much of the AGN population from Star Forming Galaxies (SFGs). This is because the average energy of AGN’s ionizing photons is higher than that of young stars in SFGs, hence AGN can more efficiently heat the gas, therefore boosting the [OIII]$lambda4363$ line. We also found independent indications of AGN activity in some high-redshift sources that were not previously identified as AGN with the traditional diagnostics diagrams, but that are placed in the AGN region of the diagnostics presented in this work. We note that, conversely, low values of [OIII]$lambda4363/$H$gamma$ can be associated either with SFGs or AGN excitation. We note that the fact that strong auroral lines are often associated with AGN does not imply that they cannot be used for direct metallicity measurements (provided that proper ionization corrections are applied), but it does affect the calibration of strong line metallicity diagnostics.arXiv:2404.10811v1 Announce Type: new
Abstract: The James Webb Space Telescope (JWST) is revolutionizing our understanding of black holes formation and growth in the early Universe. However, JWST has also revealed that some of the classical diagnostics, such as the BPT diagrams and X-ray emission, often fail to identify narrow line TypeII active galactic nuclei (AGN) at high redshift. Here we present three new rest-frame optical diagnostic diagrams leveraging the [OIII]$lambda4363$ auroral line, which has been detected in several JWST spectra. Specifically, we show that high values of the [OIII]$lambda4363/$H$gamma$ ratio provide a sufficient (but not necessary) condition to identify the presence of an AGN, both based on empirical calibrations (using local and high-redshift sources) and a broad range of photoionization models. These diagnostics are able to separate much of the AGN population from Star Forming Galaxies (SFGs). This is because the average energy of AGN’s ionizing photons is higher than that of young stars in SFGs, hence AGN can more efficiently heat the gas, therefore boosting the [OIII]$lambda4363$ line. We also found independent indications of AGN activity in some high-redshift sources that were not previously identified as AGN with the traditional diagnostics diagrams, but that are placed in the AGN region of the diagnostics presented in this work. We note that, conversely, low values of [OIII]$lambda4363/$H$gamma$ can be associated either with SFGs or AGN excitation. We note that the fact that strong auroral lines are often associated with AGN does not imply that they cannot be used for direct metallicity measurements (provided that proper ionization corrections are applied), but it does affect the calibration of strong line metallicity diagnostics.

Comments are closed, but trackbacks and pingbacks are open.