Neutrinos from core-collapse supernovae
Georg G. Raffelt (MPP), Hans-Thomas Janka (MPA), Damiano F. G. Fiorillo (DESY)
arXiv:2509.16306v1 Announce Type: new
Abstract: The core of a massive star (M > 8 Msun) eventually collapses. This implosion usually triggers a supernova (SN) explosion that ejects most of the stellar envelope and leaves behind a neutron star (NS) with a mass of up to about 2 Msun. Sometimes the explosion fails and a black hole forms instead. The NS radiates its immense binding energy (some 10% of its rest mass or $2-4times10^{53}$ erg) almost entirely as neutrinos and antineutrinos of all flavors with typical energies of some 10 MeV. This makes core-collapse SNe the most powerful neutrino factories in the Universe. Such a signal was observed once – with limited statistics – from SN 1987A in the Large Magellanic Cloud. Today, however, many large neutrino detectors act as SN observatories and would register a high-statistics signal. A future Galactic SN, though rare (1-3 per century), would produce a wealth of astrophysical and particle-physics information, including possible signatures for new particles. Neutrinos are key to SN dynamics in the framework of the Bethe-Wilson delayed explosion paradigm. After collapse, they are trapped in the core for a few seconds, forming a dense neutrino plasma that can exhibit collective flavor evolution caused by the weak interaction, a subject of intense theoretical research.arXiv:2509.16306v1 Announce Type: new
Abstract: The core of a massive star (M > 8 Msun) eventually collapses. This implosion usually triggers a supernova (SN) explosion that ejects most of the stellar envelope and leaves behind a neutron star (NS) with a mass of up to about 2 Msun. Sometimes the explosion fails and a black hole forms instead. The NS radiates its immense binding energy (some 10% of its rest mass or $2-4times10^{53}$ erg) almost entirely as neutrinos and antineutrinos of all flavors with typical energies of some 10 MeV. This makes core-collapse SNe the most powerful neutrino factories in the Universe. Such a signal was observed once – with limited statistics – from SN 1987A in the Large Magellanic Cloud. Today, however, many large neutrino detectors act as SN observatories and would register a high-statistics signal. A future Galactic SN, though rare (1-3 per century), would produce a wealth of astrophysical and particle-physics information, including possible signatures for new particles. Neutrinos are key to SN dynamics in the framework of the Bethe-Wilson delayed explosion paradigm. After collapse, they are trapped in the core for a few seconds, forming a dense neutrino plasma that can exhibit collective flavor evolution caused by the weak interaction, a subject of intense theoretical research.
2025-09-23
Comments are closed, but trackbacks and pingbacks are open.