Long-term variability in debris transiting white dwarfs
Amornrat Aungwerojwit, Boris T. Gaensicke, Vikram S. Dhillon, Andrew Drake, Keith Inight, Thomas G. Kaye, T. R. Marsh, Ed Mullen, Ingrid Pelisoli, Andrew Swan
arXiv:2404.04422v1 Announce Type: new
Abstract: Combining archival photometric observations from multiple large-area surveys spanning the past 17 years, we detect long-term variability in the light curves of ZTFJ032833.52-121945.27 (ZTFJ0328-1219), ZTFJ092311.41+423634.16 (ZTFJ0923+4236) and WD1145+017, all known to exhibit transits from planetary debris. ZTFJ0328-1219 showed an overall fading in brightness from 2011 through to 2015, with a maximum dimming of ~0.3 mag, and still remains ~0.1 mag fainter compared to 2006. We complement the analysis of the long-term behaviour of these systems with high-speed photometry. In the case of ZTFJ0923+4236 and WD1145+017, the time-series photometry exhibits vast variations in the level of transit activity, both in terms of numbers of transits, as well as their shapes and depths, and these variations correlate with the overall brightness of the systems. Inspecting the current known sample of white dwarfs with transiting debris, we estimate that similar photometric signatures may be detectable in one in a few hundred of all white dwarfs. Accounting for the highly aligned geometry required to detect transits, our estimates imply that a substantial fraction of all white dwarfs exhibiting photospheric metal pollution from accreted debris host close-in planetesimals that are currently undergoing disintegration.arXiv:2404.04422v1 Announce Type: new
Abstract: Combining archival photometric observations from multiple large-area surveys spanning the past 17 years, we detect long-term variability in the light curves of ZTFJ032833.52-121945.27 (ZTFJ0328-1219), ZTFJ092311.41+423634.16 (ZTFJ0923+4236) and WD1145+017, all known to exhibit transits from planetary debris. ZTFJ0328-1219 showed an overall fading in brightness from 2011 through to 2015, with a maximum dimming of ~0.3 mag, and still remains ~0.1 mag fainter compared to 2006. We complement the analysis of the long-term behaviour of these systems with high-speed photometry. In the case of ZTFJ0923+4236 and WD1145+017, the time-series photometry exhibits vast variations in the level of transit activity, both in terms of numbers of transits, as well as their shapes and depths, and these variations correlate with the overall brightness of the systems. Inspecting the current known sample of white dwarfs with transiting debris, we estimate that similar photometric signatures may be detectable in one in a few hundred of all white dwarfs. Accounting for the highly aligned geometry required to detect transits, our estimates imply that a substantial fraction of all white dwarfs exhibiting photospheric metal pollution from accreted debris host close-in planetesimals that are currently undergoing disintegration.