IMBH Progenitors from Stellar Collisions in Dense Star Clusters
Elena Gonz’alez Prieto, Newlin C. Weatherford, Giacomo Fragione, Kyle Kremer, Frederic A. Rasio
arXiv:2404.11646v1 Announce Type: new
Abstract: Very massive stars (VMSs) formed via a sequence of stellar collisions in dense star clusters have been proposed as the progenitors of massive black hole seeds. VMSs could indeed collapse to form intermediate-mass black holes (IMBHs), which would then grow by accretion to become the supermassive black holes observed at the centers of galaxies and powering high-redshift quasars. Previous studies have investigated how different cluster initial conditions affect the formation of a VMS, including mass segregation, stellar collisions, and binaries, among others. In this study, we investigate the growth of VMSs with a new grid of Cluster Monte Carlo (CMC) star cluster simulations — the most expansive to date. The simulations span a wide range of initial conditions, varying the number of stars, cluster density, stellar initial mass function (IMF), and primordial binary fraction. We find a gradual shift in the mass of the most massive collision product across the parameter space; in particular, denser clusters born with top-heavy IMFs provide strong collisional regimes that form VMSs with masses easily exceeding 1000 solar masses. Our results are used to derive a fitting formula that can predict the typical mass of a VMS formed as a function of the star cluster properties. Additionally, we study the stochasticity of this process and derive a statistical distribution for the mass of the VMS formed in one of our models, recomputing the model 50 times with different initial random seeds.arXiv:2404.11646v1 Announce Type: new
Abstract: Very massive stars (VMSs) formed via a sequence of stellar collisions in dense star clusters have been proposed as the progenitors of massive black hole seeds. VMSs could indeed collapse to form intermediate-mass black holes (IMBHs), which would then grow by accretion to become the supermassive black holes observed at the centers of galaxies and powering high-redshift quasars. Previous studies have investigated how different cluster initial conditions affect the formation of a VMS, including mass segregation, stellar collisions, and binaries, among others. In this study, we investigate the growth of VMSs with a new grid of Cluster Monte Carlo (CMC) star cluster simulations — the most expansive to date. The simulations span a wide range of initial conditions, varying the number of stars, cluster density, stellar initial mass function (IMF), and primordial binary fraction. We find a gradual shift in the mass of the most massive collision product across the parameter space; in particular, denser clusters born with top-heavy IMFs provide strong collisional regimes that form VMSs with masses easily exceeding 1000 solar masses. Our results are used to derive a fitting formula that can predict the typical mass of a VMS formed as a function of the star cluster properties. Additionally, we study the stochasticity of this process and derive a statistical distribution for the mass of the VMS formed in one of our models, recomputing the model 50 times with different initial random seeds.

Comments are closed, but trackbacks and pingbacks are open.