Feasibility of High-Resolution Transmission Spectroscopy for Low-Velocity Exoplanets
Connor Cheverall, Nikku Madhusudhan
arXiv:2403.18894v1 Announce Type: new
Abstract: In recent years, high-resolution transmission spectroscopy in the near-infrared has led to detections of prominent molecules in several giant exoplanets on close-in orbits. This approach has traditionally relied on the large Doppler shifts of the planetary spectral lines induced by the high velocities of the close-in planets, which were considered necessary for separating them from the quasi-static stellar and telluric lines. In this work we demonstrate the feasibility of high-resolution transmission spectroscopy for chemical detections in atmospheres of temperate low-mass exoplanets around M dwarfs with low radial velocity variation during transit. We pursue this goal using model injection and recovery tests with H- and K- band high-resolution spectroscopy of the temperate sub-Neptune TOI-732 c, observed using the IGRINS spectrograph on Gemini-S. We show that planetary signals in transit may be recovered when the change in the planet’s radial velocity is very small, down to sub-pixel velocities. This is possible due to the presence of the planetary signal in only a subset of the observed spectra. A sufficient number of out-of-transit spectra can create enough contrast between the planet signal and telluric/stellar contaminants that the planet signal does not constitute a principal component of the time-series spectra and can therefore be isolated using PCA-based detrending without relying on a significant Doppler shift. We additionally explore novel metrics for finding such signals, and investigate trends in their detectability. Our work extends the scope of high-resolution transmission spectroscopy and creates a pathway towards the characterisation of habitable sub-Neptune worlds with ground-based facilities.arXiv:2403.18894v1 Announce Type: new
Abstract: In recent years, high-resolution transmission spectroscopy in the near-infrared has led to detections of prominent molecules in several giant exoplanets on close-in orbits. This approach has traditionally relied on the large Doppler shifts of the planetary spectral lines induced by the high velocities of the close-in planets, which were considered necessary for separating them from the quasi-static stellar and telluric lines. In this work we demonstrate the feasibility of high-resolution transmission spectroscopy for chemical detections in atmospheres of temperate low-mass exoplanets around M dwarfs with low radial velocity variation during transit. We pursue this goal using model injection and recovery tests with H- and K- band high-resolution spectroscopy of the temperate sub-Neptune TOI-732 c, observed using the IGRINS spectrograph on Gemini-S. We show that planetary signals in transit may be recovered when the change in the planet’s radial velocity is very small, down to sub-pixel velocities. This is possible due to the presence of the planetary signal in only a subset of the observed spectra. A sufficient number of out-of-transit spectra can create enough contrast between the planet signal and telluric/stellar contaminants that the planet signal does not constitute a principal component of the time-series spectra and can therefore be isolated using PCA-based detrending without relying on a significant Doppler shift. We additionally explore novel metrics for finding such signals, and investigate trends in their detectability. Our work extends the scope of high-resolution transmission spectroscopy and creates a pathway towards the characterisation of habitable sub-Neptune worlds with ground-based facilities.