Development of a data overflow protection system for Super-Kamiokande to maximize data from nearby supernovae
M. Mori, K. Abe, Y. Hayato, K. Hiraide, K. Hosokawa, K. Ieki, M. Ikeda, J. Kameda, Y. Kanemura, R. Kaneshima, Y. Kashiwagi, Y. Kataoka, S. Miki, S. Mine, M. Miura, S. Moriyama, Y. Nakano, M. Nakahata, S. Nakayama, Y. Noguchi, K. Okamoto, K. Sato, H. Sekiya, H. Shiba, K. Shimizu, M. Shiozawa, Y. Sonoda, Y. Suzuki, A. Takeda, Y. Takemoto, A. Takenaka, H. Tanaka, S. Watanabe, T. Yano, S. Han, T. Kajita, K. Okumura, T. Tashiro, T. Tomiya, X. Wang, S. Yoshida, G. D. Megias, P. Fernandez, L. Labarga, N. Ospina, B. Zaldivar, B. W. Pointon, E. Kearns, J. L. Raaf, L. Wan, T. Wester, J. Bian, N. J. Griskevich, S. Locke, M. B. Smy, H. W. Sobel, V. Takhistov, A. Yankelevich, J. Hill, M. C. Jang, S. H. Lee, D. H. Moon, R. G. Park, B. Bodur, K. Scholberg, C. W. Walter, A. Beauchene, O. Drapier, A. Giampaolo, Th. A. Mueller, A. D. Santos, P. Paganini, B. Quilain, R. Rogly, T. Ishizuka, T. Nakamura, J. S. Jang, J. G. Learned, K. Choi, N. Iovine, S. Cao, L. H. V. Anthony, D. Martin, M. Scott, A. A. Sztuc, Y. Uchida, V. Berardi, M. G. Catanesi, E. Radicioni, N. F. Calabria, A. Langella, L. N. Machado, G. De Rosa, G. Collazuol, F. Iacob, M. Lamoureux, M. Mattiazzi, L. Ludovici, M. Gonin, L. Perisse, G. Pronost, C. Fujisawa, Y. Maekawa, Y. Nishimura, R. Okazaki, R. Akutsu, M. Friend, T. Hasegawa, T. Ishida, T. Kobayashi, M. Jakkapu, T. Matsubara, T. Nakadaira, K. Nakamura, Y. Oyama, K. Sakashita, T. Sekiguchi, T. Tsukamoto, N. Bhuiyan, G. T. Burton, R. Edwards, F. Di Lodovico, J. Gao, A. Goldsack, T. Katori, J. Migenda, R. M. Ramsden, Z. Xie, S. Zsoldos, Y. Kotsar, H. Ozaki, A. T. Suzuki, Y. Takagi, Y. Takeuchi, H. Zhong, C. Bronner, J. Feng, J. R. Hu, Z. Hu, M. Kawaune, T. Kikawa, F. LiCheng, T. Nakaya, R. A. Wendell, K. Yasutome, S. J. Jenkins, N. McCauley, P. Mehta, A. Tarant, Y. Fukuda, Y. Itow, H. Menjo, K. Ninomiya, Y. Yoshioka, J. Lagoda, S. M. Lakshmi, M. Mandal, P. Mijakowski, Y. S. Prabhu, J. Zalipska, M. Jia, J. Jiang, C. K. Jung, W. Shi, M. J. Wilking, C. Yanagisawa, M. Harada, Y. Hino, H. Ishino, H. Kitagawa, Y. Koshio, F. Nakanishi, S. Sakai, T. Tada, T. Tano, G. Barr, D. Barrow, L. Cook, S. Samani, D. Wark, A. Holin, F. Nova, S. Jung, B. S. Yang, J. Y. Yang, J. Yoo, J. E. P. Fannon, L. Kneale, M. Malek, J. M. McElwee, M. D. Thiesse, L. F. Thompson, S. Wilson, H. Okazawa, S. B. Kim, E. Kwon, J. W. Seo, I. Yu, A. K. Ichikawa, K. D. Nakamura, S. Tairafune, K. Nishijima, A. Eguchi, K. Nakagiri, Y. Nakajima, S. Shima, N. Taniuchi, E. Watanabe, M. Yokoyama, P. de Perio, S. Fujita, K. Martens, K. M. Tsui, M. R. Vagins, C. J. Valls, J. Xia, M. Kuze, S. Izumiyama, M. Ishitsuka, H. Ito, T. Kinoshita, R. Matsumoto, Y. Ommura, N. Shigeta, M. Shinoki, T. Suganuma, K. Yamauchi, T. Yoshida, J. F. Martin, H. A. Tanaka, T. Towstego, R. Gaur, V. Gousy-Leblanc, M. Hartz, A. Konaka, X. Li, N. W. Prouse, S. Chen, B. D. Xu, B. Zhang, M. Posiadala-Zezula, S. B. Boyd, D. Hadley, M. Nicholson, M. O’ Flaherty, B. Richards, A. Ali, B. Jamieson, S. Amanai, Ll. Marti, A. Minamino, G. Pintaudi, S. Sano, S. Suzuki, K. Wada
arXiv:2404.08725v1 Announce Type: new
Abstract: Neutrinos from very nearby supernovae, such as Betelgeuse, are expected to generate more than ten million events over 10,s in Super-Kamokande (SK). At such large event rates, the buffers of the SK analog-to-digital conversion board (QBEE) will overflow, causing random loss of data that is critical for understanding the dynamics of the supernova explosion mechanism. In order to solve this problem, two new DAQ modules were developed to aid in the observation of very nearby supernovae. The first of these, the SN module, is designed to save only the number of hit PMTs during a supernova burst and the second, the Veto module, prescales the high rate neutrino events to prevent the QBEE from overflowing based on information from the SN module. In the event of a very nearby supernova, these modules allow SK to reconstruct the time evolution of the neutrino event rate from beginning to end using both QBEE and SN module data. This paper presents the development and testing of these modules together with an analysis of supernova-like data generated with a flashing laser diode. We demonstrate that the Veto module successfully prevents DAQ overflows for Betelgeuse-like supernovae as well as the long-term stability of the new modules. During normal running the Veto module is found to issue DAQ vetos a few times per month resulting in a total dead time less than 1,ms, and does not influence ordinary operations. Additionally, using simulation data we find that supernovae closer than 800~pc will trigger Veto module resulting in a prescaling of the observed neutrino data.arXiv:2404.08725v1 Announce Type: new
Abstract: Neutrinos from very nearby supernovae, such as Betelgeuse, are expected to generate more than ten million events over 10,s in Super-Kamokande (SK). At such large event rates, the buffers of the SK analog-to-digital conversion board (QBEE) will overflow, causing random loss of data that is critical for understanding the dynamics of the supernova explosion mechanism. In order to solve this problem, two new DAQ modules were developed to aid in the observation of very nearby supernovae. The first of these, the SN module, is designed to save only the number of hit PMTs during a supernova burst and the second, the Veto module, prescales the high rate neutrino events to prevent the QBEE from overflowing based on information from the SN module. In the event of a very nearby supernova, these modules allow SK to reconstruct the time evolution of the neutrino event rate from beginning to end using both QBEE and SN module data. This paper presents the development and testing of these modules together with an analysis of supernova-like data generated with a flashing laser diode. We demonstrate that the Veto module successfully prevents DAQ overflows for Betelgeuse-like supernovae as well as the long-term stability of the new modules. During normal running the Veto module is found to issue DAQ vetos a few times per month resulting in a total dead time less than 1,ms, and does not influence ordinary operations. Additionally, using simulation data we find that supernovae closer than 800~pc will trigger Veto module resulting in a prescaling of the observed neutrino data.

Comments are closed, but trackbacks and pingbacks are open.