Dark Branches of Immortal Stars at the Galactic Center
Isabelle John, Rebecca K. Leane, Tim Linden
arXiv:2405.12267v1 Announce Type: new
Abstract: We show that stars in the inner parsec of the Milky Way can be significantly affected by dark matter annihilation, producing population-level effects that are visible in a Hertzsprung-Russell (HR) diagram. We establish the dark HR diagram, where stars lie on a new stable $textit{dark main sequence}$ with similar luminosities, but lower temperatures, than the standard main sequence. The dark matter density in these stars continuously replenishes, granting these stars immortality and solving multiple stellar anomalies. Upcoming telescopes could detect the dark main sequence, offering a new dark matter discovery avenue.arXiv:2405.12267v1 Announce Type: new
Abstract: We show that stars in the inner parsec of the Milky Way can be significantly affected by dark matter annihilation, producing population-level effects that are visible in a Hertzsprung-Russell (HR) diagram. We establish the dark HR diagram, where stars lie on a new stable $textit{dark main sequence}$ with similar luminosities, but lower temperatures, than the standard main sequence. The dark matter density in these stars continuously replenishes, granting these stars immortality and solving multiple stellar anomalies. Upcoming telescopes could detect the dark main sequence, offering a new dark matter discovery avenue.