Cosmological test of an ultraviolet origin of Dark Energy
Hans Christiansen, Bence Tak’acs, Steen H. Hansen
arXiv:2406.15390v1 Announce Type: new
Abstract: The accelerated expansion of the Universe is impressively well described by a cosmological constant. However, the observed value of the cosmological constant is much smaller than expected based on quantum field theories. Recent efforts to achieve consistency in these theories have proposed a relationship between Dark Energy and the most compact objects, such as black holes (BH). However, experimental tests are very challenging to devise and perform. In this article, we present a testable model with no cosmological constant, in which the accelerated expansion can be driven by black holes. The model couples the expansion of the Universe (the Friedmann equation) with the mass-function of cosmological haloes (using the Press-Schechter formalism). Through the observed link between halo-masses and BH-masses one thus gets a coupling between the expansion rate of the Universe and the BHs. We compare the predictions of this simple BH model with SN1a data and find a poor agreement with observations. Our method is sufficiently general that it allows us to also test a fundamentally different model, also without a cosmological constant, where the accelerated expansion is driven by a new force proportional to the internal velocity dispersion of galaxies. Surprisingly enough this model cannot be excluded using the SN1a data.arXiv:2406.15390v1 Announce Type: new
Abstract: The accelerated expansion of the Universe is impressively well described by a cosmological constant. However, the observed value of the cosmological constant is much smaller than expected based on quantum field theories. Recent efforts to achieve consistency in these theories have proposed a relationship between Dark Energy and the most compact objects, such as black holes (BH). However, experimental tests are very challenging to devise and perform. In this article, we present a testable model with no cosmological constant, in which the accelerated expansion can be driven by black holes. The model couples the expansion of the Universe (the Friedmann equation) with the mass-function of cosmological haloes (using the Press-Schechter formalism). Through the observed link between halo-masses and BH-masses one thus gets a coupling between the expansion rate of the Universe and the BHs. We compare the predictions of this simple BH model with SN1a data and find a poor agreement with observations. Our method is sufficiently general that it allows us to also test a fundamentally different model, also without a cosmological constant, where the accelerated expansion is driven by a new force proportional to the internal velocity dispersion of galaxies. Surprisingly enough this model cannot be excluded using the SN1a data.

Comments are closed, but trackbacks and pingbacks are open.