Cloud-Scale Molecular Gas Properties of the Antennae Merger: A Comparative Study with PHANGS-ALMA Galaxies and NGC 3256
Nathan Brunetti, Christine D. Wilson, Hao He, Jiayi Sun, Adam K. Leroy, Erik Rosolowsky, Ashley Bemis, Frank Bigiel, Brent Groves, Toshiki Saito, Eva Schinnerer
arXiv:2404.04555v1 Announce Type: new
Abstract: We present observations of the central 9 kpc of the Antennae merger (NGC 4038/9) at 55 pc resolution in the CO 2-1 line obtained with the Atacama Large Millimeter/submillimeter Array (ALMA). We use a pixel-based analysis to compare the gas properties in the Antennae to those in 70 nearby spiral galaxies from the PHANGS-ALMA survey, as well as the merger and nearest luminous infrared galaxy NGC 3256. Compared to PHANGS galaxies at matched spatial resolution, the molecular gas in the Antennae exhibits some of the highest surface densities, velocity dispersions, peak brightness temperatures, and turbulent pressures. However, the virial parameters in the Antennae are consistent with many of the PHANGS galaxies. NGC 3256 has similar gas surface densities but higher nuclear velocity dispersions than the Antennae, as well as higher system-wide peak brightness temperatures and virial parameters. NGC 3256 is at a later stage in the merging process than the Antennae, which may result in more intense merger-driven gas flows that could drive up the turbulence in the gas. The high virial parameters in NGC 3256 may indicate that this increased turbulence is suppressing future star formation as NGC 3256 moves out of the starburst phase. In comparison, the relatively normal virial parameters in the Antennae may imply that it is about to undergo a new burst of star formation.arXiv:2404.04555v1 Announce Type: new
Abstract: We present observations of the central 9 kpc of the Antennae merger (NGC 4038/9) at 55 pc resolution in the CO 2-1 line obtained with the Atacama Large Millimeter/submillimeter Array (ALMA). We use a pixel-based analysis to compare the gas properties in the Antennae to those in 70 nearby spiral galaxies from the PHANGS-ALMA survey, as well as the merger and nearest luminous infrared galaxy NGC 3256. Compared to PHANGS galaxies at matched spatial resolution, the molecular gas in the Antennae exhibits some of the highest surface densities, velocity dispersions, peak brightness temperatures, and turbulent pressures. However, the virial parameters in the Antennae are consistent with many of the PHANGS galaxies. NGC 3256 has similar gas surface densities but higher nuclear velocity dispersions than the Antennae, as well as higher system-wide peak brightness temperatures and virial parameters. NGC 3256 is at a later stage in the merging process than the Antennae, which may result in more intense merger-driven gas flows that could drive up the turbulence in the gas. The high virial parameters in NGC 3256 may indicate that this increased turbulence is suppressing future star formation as NGC 3256 moves out of the starburst phase. In comparison, the relatively normal virial parameters in the Antennae may imply that it is about to undergo a new burst of star formation.