Kinetic Inductance Detectors for the OLIMPO experiment: in–flight operation and performance. (arXiv:1902.08993v1 [astro-ph.IM]) <a href="http://arxiv.org/find/astro-ph/1/au:+Masi_S/0/1/0/all/0/1">S. Masi</a> (a, b), <a href="http://arxiv.org/find/astro-ph/1/au:+Bernardis_P/0/1/0/all/0/1">P. de Bernardis</a> (a, b), <a href="http://arxiv.org/find/astro-ph/1/au:+Paiella_A/0/1/0/all/0/1">A. Paiella</a> (a, b), <a href="http://arxiv.org/find/astro-ph/1/au:+Piacentini_F/0/1/0/all/0/1">F. Piacentini</a> (a, b), <a href="http://arxiv.org/find/astro-ph/1/au:+Lamagna_L/0/1/0/all/0/1">L. Lamagna</a> (a, b), <a href="http://arxiv.org/find/astro-ph/1/au:+Coppolecchia_A/0/1/0/all/0/1">A. Coppolecchia</a> (a, b), <a href="http://arxiv.org/find/astro-ph/1/au:+Ade_P/0/1/0/all/0/1">P.A.R. Ade</a> (c), <a href="http://arxiv.org/find/astro-ph/1/au:+Battistelli_E/0/1/0/all/0/1">E.S. Battistelli</a> (a, b), <a href="http://arxiv.org/find/astro-ph/1/au:+Castellano_M/0/1/0/all/0/1">M.G. Castellano</a> (d), <a href="http://arxiv.org/find/astro-ph/1/au:+Colantoni_I/0/1/0/all/0/1">I. Colantoni</a> (d, e), <a href="http://arxiv.org/find/astro-ph/1/au:+Columbro_F/0/1/0/all/0/1">F. Columbro</a> (a, b), <a href="http://arxiv.org/find/astro-ph/1/au:+DAlessandro_G/0/1/0/all/0/1">G. D&#x27;Alessandro</a> (a, b), <a href="http://arxiv.org/find/astro-ph/1/au:+Petris_M/0/1/0/all/0/1">M. De Petris</a> (a, b), <a href="http://arxiv.org/find/astro-ph/1/au:+Gordon_S/0/1/0/all/0/1">S. Gordon</a> (f), <a href="http://arxiv.org/find/astro-ph/1/au:+Magneville_C/0/1/0/all/0/1">C. Magneville</a> (g), <a href="http://arxiv.org/find/astro-ph/1/au:+Mauskopf_P/0/1/0/all/0/1">P. Mauskopf</a> (f), <a href="http://arxiv.org/find/astro-ph/1/au:+Pettinari_G/0/1/0/all/0/1">G. Pettinari</a> (d), <a href="http://arxiv.org/find/astro-ph/1/au:+Pisano_G/0/1/0/all/0/1">G. Pisano</a> (c), <a href="http://arxiv.org/find/astro-ph/1/au:+Polenta_G/0/1/0/all/0/1">G. Polenta</a> (i), <a href="http://arxiv.org/find/astro-ph/1/au:+Presta_G/0/1/0/all/0/1">G. Presta</a>Read More →

A direct comparison of high-speed methods for the numerical Abel transform. (arXiv:1902.09007v1 [physics.chem-ph]) <a href="http://arxiv.org/find/physics/1/au:+Hickstein_D/0/1/0/all/0/1">Daniel D. Hickstein</a>, <a href="http://arxiv.org/find/physics/1/au:+Gibson_S/0/1/0/all/0/1">Stephen T. Gibson</a>, <a href="http://arxiv.org/find/physics/1/au:+Yurchak_R/0/1/0/all/0/1">Roman Yurchak</a>, <a href="http://arxiv.org/find/physics/1/au:+Das_D/0/1/0/all/0/1">Dhrubajyoti D. Das</a>, <a href="http://arxiv.org/find/physics/1/au:+Ryazanov_M/0/1/0/all/0/1">Mikhail Ryazanov</a> The Abel transform is a mathematical operation that transforms a cylindrically symmetric three-dimensional (3D) object into its two-dimensional (2D) projection. The inverse Abel transform reconstructs the 3D object from the 2D projection. Abel transforms have wide application across numerous fields of science, especially chemical physics, astronomy, and the study of laser-plasma plumes. Consequently, many numerical methods for the Abel transform have been developed, which makes it challenging to select the ideal method for aRead More →

RMF models with $sigma$-scaled hadron masses and couplings for description of heavy-ion collisions below 2A GeV. (arXiv:1902.09016v1 [nucl-th]) <a href="http://arxiv.org/find/nucl-th/1/au:+Maslov_K/0/1/0/all/0/1">K.A. Maslov</a>, <a href="http://arxiv.org/find/nucl-th/1/au:+Voskresensky_D/0/1/0/all/0/1">D.N. Voskresensky</a> Within the relativistic mean-field framework with hadron masses and coupling constants dependent on the mean scalar field we study properties of nuclear matter at finite temperatures, baryon densities and isospin asymmetries relevant for heavy-ion collisions at laboratory energies below 2$A$ GeV. Previously constructed (KVORcut-based and MKVOR-based) models for the description of the cold hadron matter, which differ mainly by the density dependence of the nucleon effective mass and symmetry energy, are extended for finite temperatures. The baryon equation of state, whichRead More →

Does spatial flatness forbid the turnaround epoch of collapsing structures?. (arXiv:1902.09064v1 [astro-ph.CO]) <a href="http://arxiv.org/find/astro-ph/1/au:+Roukema_B/0/1/0/all/0/1">Boudeiwjn F. Roukema</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Ostrowski_J/0/1/0/all/0/1">Jan J. Ostrowski</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Mourier_P/0/1/0/all/0/1">Pierre Mourier</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Vigneron_Q/0/1/0/all/0/1">Quentin Vigneron</a> Cosmological observational analysis frequently assumes that the Universe is spatially flat. We aim to non-perturbatively check the conditions under which a flat or nearly flat expanding dust universe, including the LCDM model if interpreted as strictly flat, forbids the gravitational collapse of structure. We quantify spatial curvature at turnaround. We use the Hamiltonian constraint to determine the pointwise conditions required for an overdensity to reach its turnaround epoch in an exactly flat spatial domain. We illustrate this with aRead More →

Cosmogenic production of $^{39}$Ar and $^{37}$Ar in argon. (arXiv:1902.09072v1 [nucl-ex]) <a href="http://arxiv.org/find/nucl-ex/1/au:+Saldanha_R/0/1/0/all/0/1">R. Saldanha</a>, <a href="http://arxiv.org/find/nucl-ex/1/au:+Back_H/0/1/0/all/0/1">H.O. Back</a>, <a href="http://arxiv.org/find/nucl-ex/1/au:+Tsang_R/0/1/0/all/0/1">R.H.M. Tsang</a>, <a href="http://arxiv.org/find/nucl-ex/1/au:+Alexander_T/0/1/0/all/0/1">T. Alexander</a>, <a href="http://arxiv.org/find/nucl-ex/1/au:+Elliott_S/0/1/0/all/0/1">S.R. Elliott</a>, <a href="http://arxiv.org/find/nucl-ex/1/au:+Ferrara_S/0/1/0/all/0/1">S. Ferrara</a>, <a href="http://arxiv.org/find/nucl-ex/1/au:+Mace_E/0/1/0/all/0/1">E. Mace</a>, <a href="http://arxiv.org/find/nucl-ex/1/au:+Overman_C/0/1/0/all/0/1">C. Overman</a>, <a href="http://arxiv.org/find/nucl-ex/1/au:+Zalavadia_M/0/1/0/all/0/1">M.Zalavadia</a> We have experimentally determined the production rate of $^{39}$Ar and $^{37}$Ar due to cosmic ray neutron interactions in argon at sea level. Understanding these production rates is important for argon-based dark matter experiments that plan to utilize argon extracted from deep underground because it is imperative to know what the ingrowth of $^{39}$Ar will be during the production, transport, and storage of the underground argon. These measurements also allowRead More →

Multi-wavelength variability of CGRaBS J0733+0456: identifying a distant $gamma$-ray blazar at {it z} = 3.01. (arXiv:1902.09077v1 [astro-ph.HE]) <a href="http://arxiv.org/find/astro-ph/1/au:+Liao_N/0/1/0/all/0/1">Neng-Hui Liao</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Dou_L/0/1/0/all/0/1">Li-Ming Dou</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Jiang_N/0/1/0/all/0/1">Ning Jiang</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Fan_Y/0/1/0/all/0/1">Yi-Zhong Fan</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Wang_T/0/1/0/all/0/1">Ting-Gui Wang</a> We report on OVRO, {it WISE}, {it Swift} and {it Fermi}-LAT observations of the high redshift blazar CGRaBS J0733+0456, from which significant variability in radio, infrared (IR) as well as $gamma$-ray domains are detected. Particularly, the amplitude of long-term IR variation is over one order of magnitude and the IR variability timescale is constrained as short as a few hours in the source frame. The IR and $gamma$-ray light curves are found toRead More →

Relativistic spin precession in the binary PSR J1141$-$6545. (arXiv:1902.09112v1 [astro-ph.HE]) <a href="http://arxiv.org/find/astro-ph/1/au:+Krishnan_V/0/1/0/all/0/1">V. Venkatraman Krishnan</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bailes_M/0/1/0/all/0/1">M. Bailes</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Straten_W/0/1/0/all/0/1">W. van Straten</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Keane_E/0/1/0/all/0/1">E. F. Keane</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kramer_M/0/1/0/all/0/1">M. Kramer</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bhat_N/0/1/0/all/0/1">N. D. R. Bhat</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Flynn_C/0/1/0/all/0/1">C. Flynn</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Oslowski_S/0/1/0/all/0/1">S. Os&#x142;owski</a> PSR J1141$-$6545 is a precessing binary pulsar that has the rare potential to reveal the two-dimensional structure of a non-recycled pulsar emission cone. It has undergone $sim 25 deg$ of relativistic spin precession in the $sim18$ years since its discovery. In this paper, we present a detailed Bayesian analysis of the precessional evolution of the width of the total intensity profile, to understand the changes toRead More →

Gravitational wave background from kink-kink collisions on infinite cosmic strings. (arXiv:1902.09120v1 [astro-ph.CO]) <a href="http://arxiv.org/find/astro-ph/1/au:+Matsui_Y/0/1/0/all/0/1">Yuka Matsui</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kuroyanagi_S/0/1/0/all/0/1">Sachiko Kuroyanagi</a> We calculate the power spectrum of the stochastic gravitational wave (GW) background expected from kink-kink collisions on infinite cosmic strings. Intersections in the cosmic string network continuously generate kinks, which emit GW bursts by their propagation on curved strings as well as by their collisions. First, we show that the GW background from kink-kink collisions is much larger than the one from propagating kinks at high frequencies because of the higher event rate. We then propose a method to take into account the energy loss of theRead More →

Ghost Collapse : exploring feasibility of spurious Spherical Collapses. (arXiv:1902.09125v1 [astro-ph.CO]) <a href="http://arxiv.org/find/astro-ph/1/au:+Vidhate_A/0/1/0/all/0/1">Aditya Vidhate</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Nigam_R/0/1/0/all/0/1">Rahul Nigam</a> We explore the real solutions to the Spherical Collapse Model in a non-flat Universe with a Cosmological Constant, and observe a possible situation for a fake or Ghost Collapse, in which an expanding overdense spherical region, turns around and begins to collapse, turns around again after a finite time and starts expanding. To make such a situation of spurious collapse feasible, we make a linear redshift dependent correction to the standard Dark Energy density term which is originally in the form of a cosmological constant. There is goodRead More →

Ubiquitous cold and massive filaments in cool core clusters. (arXiv:1902.09164v1 [astro-ph.GA]) <a href="http://arxiv.org/find/astro-ph/1/au:+Olivares_V/0/1/0/all/0/1">V. Olivares</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Salome_P/0/1/0/all/0/1">P. Salom&#xe9;</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Combes_F/0/1/0/all/0/1">F. Combes</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Hamer_S/0/1/0/all/0/1">S. Hamer</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Guillard_P/0/1/0/all/0/1">P. Guillard</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Lehnert_M/0/1/0/all/0/1">M. D. Lehnert</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Polles_F/0/1/0/all/0/1">F. Polles</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Beckmann_R/0/1/0/all/0/1">R. S. Beckmann</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Dubois_Y/0/1/0/all/0/1">Y. Dubois</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Donahue_M/0/1/0/all/0/1">M. Donahue</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Edge_A/0/1/0/all/0/1">A. Edge</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Fabian_A/0/1/0/all/0/1">A. C. Fabian</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+McNamara_B/0/1/0/all/0/1">B. McNamara</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Rose_T/0/1/0/all/0/1">T. Rose</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Russell_H/0/1/0/all/0/1">H. Russell</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Tremblay_G/0/1/0/all/0/1">G. Tremblay</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Vantyghem_A/0/1/0/all/0/1">A. Vantyghem</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Canning_R/0/1/0/all/0/1">R. E. A. Canning</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Ferland_G/0/1/0/all/0/1">G. Ferland</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Godard_B/0/1/0/all/0/1">B. Godard</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Hogan_M/0/1/0/all/0/1">M. Hogan</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Peirani_S/0/1/0/all/0/1">S. Peirani</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Forets_G/0/1/0/all/0/1">G. Pineau des Forets</a> Multi-phase filamentary structures around Brightest Cluster Galaxies are likely a key step of AGN-feedback. We observed molecular gasRead More →

A multi-wavelength de-blended Herschel view of the statistical properties of dusty star-forming galaxies across cosmic time. (arXiv:1902.09172v1 [astro-ph.GA]) <a href="http://arxiv.org/find/astro-ph/1/au:+Wang_L/0/1/0/all/0/1">L. Wang</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Pearson_W/0/1/0/all/0/1">W. J. Pearson</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Cowley_W/0/1/0/all/0/1">W. Cowley</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Trayford_J/0/1/0/all/0/1">J. W. Trayford</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bethermin_M/0/1/0/all/0/1">M. Bethermin</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Gruppioni_C/0/1/0/all/0/1">C. Gruppioni</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Hurley_P/0/1/0/all/0/1">P. Hurley</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Michalowski_M/0/1/0/all/0/1">M. J. Michalowski</a> We aim to study the statistical properties of dusty star-forming galaxies, such as their number counts, luminosity functions (LF) and dust-obscured star-formation rate density (SFRD). We use state-of-the-art de-blended Herschel catalogue in the COSMOS field, generated by combining the Bayesian source extraction tool XID+ and informative prior on the spectral energy distributions, to measure the number counts and LFs atRead More →

Propagation and Estimation of the Dynamical Behaviour of Gravitationally Interacting Rigid Bodies. (arXiv:1902.09195v1 [astro-ph.EP]) <a href="http://arxiv.org/find/astro-ph/1/au:+Dirkx_D/0/1/0/all/0/1">Dominic Dirkx</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Mooij_E/0/1/0/all/0/1">Erwin Mooij</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Root_B/0/1/0/all/0/1">Bart Root</a> Next-generation planetary tracking methods, such as interplanetary laser ranging (ILR) and same-beam interferometry (SBI) promise an orders-of-magnitude increase in the accuracy of measurements of solar system dynamics. This requires a reconsideration of modelling strategies for the translational and rotational dynamics of natural bodies, to ensure that model errors are well below the measurement uncertainties. The influence of the gravitational interaction of the full mass distributions of celestial bodies, the so-called figure-figure effects, will need to be included for selected future missions. TheRead More →

Black holes in General Relativity and beyond. (arXiv:1902.09199v1 [gr-qc]) <a href="http://arxiv.org/find/gr-qc/1/au:+Barausse_E/0/1/0/all/0/1">Enrico Barausse</a> The recent detections of gravitational waves from binary systems of black holes are in remarkable agreement with the predictions of General Relativity. In this pedagogical note, I summarize the talk that I gave at the 2nd global meeting of the COST action “GWverse” (Athens, January 2019), in which I attempted to go through the physics of the different phases of the evolution of black hole binary systems, providing a qualitative physical interpretation of each one of them, and briefly describing how they would be modified if gravitation were described by a theory extendingRead More →

Orbital and epicyclic frequencies in massive scalar-tensor theory with self-interaction. (arXiv:1902.09208v1 [gr-qc]) <a href="http://arxiv.org/find/gr-qc/1/au:+Staykov_K/0/1/0/all/0/1">Kalin V. Staykov</a>, <a href="http://arxiv.org/find/gr-qc/1/au:+Doneva_D/0/1/0/all/0/1">Daniela D. Doneva</a>, <a href="http://arxiv.org/find/gr-qc/1/au:+Yazadjiev_S/0/1/0/all/0/1">Stoytcho S. Yazadjiev</a> Testing modified theories of gravity with direct observations of the parameters of a neutron star is not the optimal way of testing gravitational theories. However, observing electromagnetic signals originating from the close vicinity of the compact object my turn out an excellent way of probing spacetime in strong field regime. A promising candidate for doing so are the so-called quasi-periodic oscillations, observed in the X-ray light curves of some pulsars. Although the origin of those oscillations is unknown, one thing mostRead More →

EVN observations of 6.7 GHz methanol maser polarization in massive star-forming regions IV. Magnetic field strength limits and structure for 7 additional sources. (arXiv:1902.08210v1 [astro-ph.SR]) <a href="http://arxiv.org/find/astro-ph/1/au:+Surcis_G/0/1/0/all/0/1">G. Surcis</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Vlemmings_W/0/1/0/all/0/1">W.H.T. Vlemmings</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Langevelde_H/0/1/0/all/0/1">H.J. van Langevelde</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kramer_B/0/1/0/all/0/1">B. Hutawarakorn Kramer</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bartkiewicz_A/0/1/0/all/0/1">A. Bartkiewicz</a> MHD simulations show that the magnetic field can drive molecular outflows during the formation of massive protostars. The best probe to observationally measure both the morphology and the strength of this magnetic field at scales of 10-100 au is maser polarization. We measure the direction of magnetic fields at mas resolution around a sample of massive star-forming regions to determine whether there isRead More →

Relaxion Stars and their detection via Atomic Physics. (arXiv:1902.08212v1 [hep-ph]) <a href="http://arxiv.org/find/hep-ph/1/au:+Banerjee_A/0/1/0/all/0/1">Abhishek Banerjee</a>, <a href="http://arxiv.org/find/hep-ph/1/au:+Budker_D/0/1/0/all/0/1">Dmitry Budker</a>, <a href="http://arxiv.org/find/hep-ph/1/au:+Eby_J/0/1/0/all/0/1">Joshua Eby</a>, <a href="http://arxiv.org/find/hep-ph/1/au:+Kim_H/0/1/0/all/0/1">Hyungjin Kim</a>, <a href="http://arxiv.org/find/hep-ph/1/au:+Perez_G/0/1/0/all/0/1">Gilad Perez</a> The cosmological relaxion can address the hierarchy problem, while its coherent oscillations can constitute dark matter in the present universe. We consider the possibility that the relaxion forms gravitationally bound objects that we denote as relaxion stars. The density of these stars would be higher than that of the local dark matter density, resulting in enhanced signals for table-top detectors. Furthermore, we raise the possibility that these objects may be trapped by an external gravitational potential, such as that ofRead More →

Environmental Effect on the Interstellar Medium in Galaxies across the Cosmic Web at z=0.73. (arXiv:1902.08216v1 [astro-ph.GA]) <a href="http://arxiv.org/find/astro-ph/1/au:+Betti_S/0/1/0/all/0/1">S. K. Betti</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Pope_A/0/1/0/all/0/1">Alexandra Pope</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Scoville_N/0/1/0/all/0/1">N. Scoville</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Yun_M/0/1/0/all/0/1">Min S. Yun</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Aussel_H/0/1/0/all/0/1">H. Aussel</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kartaltepe_J/0/1/0/all/0/1">J. Kartaltepe</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Sheth_K/0/1/0/all/0/1">K. Sheth</a> We present new ALMA dust continuum observations of 101 $log(mathrm{M}_* / mathrm{M}_odot)$ > 9.5 galaxies in the COSMOS field to study the effect of environment on the interstellar medium at z ~ 0.7. At this redshift, our targets span a wide range of environments allowing for a diverse sample of galaxies with densities, $Sigma$ = 0.16-10.5 Mpc$^{-2}$ (per $Delta$ z = 0.024). Using the ALMA observations,Read More →

Slowing the Spins of Stellar Cores. (arXiv:1902.08227v1 [astro-ph.SR]) <a href="http://arxiv.org/find/astro-ph/1/au:+Fuller_J/0/1/0/all/0/1">Jim Fuller</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Piro_A/0/1/0/all/0/1">Anthony L. Piro</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Jermyn_A/0/1/0/all/0/1">Adam S. Jermyn</a> The angular momentum (AM) evolution of stellar interiors, along with the resulting rotation rates of stellar remnants, remains poorly understood. Asteroseismic measurements of red giant stars reveal that their cores rotate much faster than their surfaces, but much slower than theoretically predicted, indicating an unidentified source of AM transport operates in their radiative cores. Motivated by this, we investigate the magnetic Tayler instability and argue that it saturates when turbulent dissipation of the perturbed magnetic field energy is equal to magnetic energy generation via winding. ThisRead More →

Optimizing Sparse RFI Prediction using Deep Learning. (arXiv:1902.08244v1 [astro-ph.IM]) <a href="http://arxiv.org/find/astro-ph/1/au:+Kerrigan_J/0/1/0/all/0/1">Joshua Kerrigan</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Plante_P/0/1/0/all/0/1">Paul La Plante</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kohn_S/0/1/0/all/0/1">Saul Kohn</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Pober_J/0/1/0/all/0/1">Jonathan C. Pober</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Aguirre_J/0/1/0/all/0/1">James Aguirre</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Abdurashidova_Z/0/1/0/all/0/1">Zara Abdurashidova</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Alexander_P/0/1/0/all/0/1">Paul Alexander</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Ali_Z/0/1/0/all/0/1">Zaki S. Ali</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Balfour_Y/0/1/0/all/0/1">Yanga Balfour</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Beardsley_A/0/1/0/all/0/1">Adam P. Beardsley</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bernardi_G/0/1/0/all/0/1">Gianni Bernardi</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bowman_J/0/1/0/all/0/1">Judd D. Bowman</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bradley_R/0/1/0/all/0/1">Richard F. Bradley</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Burba_J/0/1/0/all/0/1">Jacob Burba</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Carilli_C/0/1/0/all/0/1">Chris L. Carilli</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Cheng_C/0/1/0/all/0/1">Carina Cheng</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+DeBoer_D/0/1/0/all/0/1">David R. DeBoer</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Dexter_M/0/1/0/all/0/1">Matt Dexter</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Acedo_E/0/1/0/all/0/1">Eloy de Lera Acedo</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Dillon_J/0/1/0/all/0/1">Joshua S. Dillon</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Estrada_J/0/1/0/all/0/1">Julia Estrada</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Ewall_Wice_A/0/1/0/all/0/1">Aaron Ewall-Wice</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Fagnoni_N/0/1/0/all/0/1">Nicolas Fagnoni</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Fritz_R/0/1/0/all/0/1">Randall Fritz</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Furlanetto_S/0/1/0/all/0/1">Steve R. Furlanetto</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Glendenning_B/0/1/0/all/0/1">Brian Glendenning</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Greig_B/0/1/0/all/0/1">Bradley Greig</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Grobbelaar_J/0/1/0/all/0/1">Jasper Grobbelaar</a>,Read More →

Forecasting Angular Cross Correlations Between Diffuse X-ray Emission and the Thermal Sunyaev-Zel’dovich Effect. (arXiv:1902.08268v1 [astro-ph.CO]) <a href="http://arxiv.org/find/astro-ph/1/au:+Lakey_V/0/1/0/all/0/1">Vincent Lakey</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Huffenberger_K/0/1/0/all/0/1">Kevin Huffenberger</a> X-ray emission and the thermal Sunyaev-Zel’dovich distortion to the Cosmic Microwave Background are two important handles on the gas content of the Universe. The cross-correlation between these effects eliminates noise bias and reduces observational systematic effects. Using analytic models for the cluster profile, we develop a halo model formalism to study this cross-correlation and apply it to forecast the signal-to-noise of upcoming measurements from eROSITA and the Simons Observatory. In the soft X-ray band (0.5–2 keV), we forecast a signal-to-noise of 174 for theRead More →