Orbital and epicyclic frequencies in massive scalar-tensor theory with self-interaction. (arXiv:1902.09208v1 [gr-qc]) <a href="http://arxiv.org/find/gr-qc/1/au:+Staykov_K/0/1/0/all/0/1">Kalin V. Staykov</a>, <a href="http://arxiv.org/find/gr-qc/1/au:+Doneva_D/0/1/0/all/0/1">Daniela D. Doneva</a>, <a href="http://arxiv.org/find/gr-qc/1/au:+Yazadjiev_S/0/1/0/all/0/1">Stoytcho S. Yazadjiev</a> Testing modified theories of gravity with direct observations of the parameters of a neutron star is not the optimal way of testing gravitational theories. However, observing electromagnetic signals originating from the close vicinity of the compact object my turn out an excellent way of probing spacetime in strong field regime. A promising candidate for doing so are the so-called quasi-periodic oscillations, observed in the X-ray light curves of some pulsars. Although the origin of those oscillations is unknown, one thing mostRead More →

EVN observations of 6.7 GHz methanol maser polarization in massive star-forming regions IV. Magnetic field strength limits and structure for 7 additional sources. (arXiv:1902.08210v1 [astro-ph.SR]) <a href="http://arxiv.org/find/astro-ph/1/au:+Surcis_G/0/1/0/all/0/1">G. Surcis</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Vlemmings_W/0/1/0/all/0/1">W.H.T. Vlemmings</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Langevelde_H/0/1/0/all/0/1">H.J. van Langevelde</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kramer_B/0/1/0/all/0/1">B. Hutawarakorn Kramer</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bartkiewicz_A/0/1/0/all/0/1">A. Bartkiewicz</a> MHD simulations show that the magnetic field can drive molecular outflows during the formation of massive protostars. The best probe to observationally measure both the morphology and the strength of this magnetic field at scales of 10-100 au is maser polarization. We measure the direction of magnetic fields at mas resolution around a sample of massive star-forming regions to determine whether there isRead More →

Relaxion Stars and their detection via Atomic Physics. (arXiv:1902.08212v1 [hep-ph]) <a href="http://arxiv.org/find/hep-ph/1/au:+Banerjee_A/0/1/0/all/0/1">Abhishek Banerjee</a>, <a href="http://arxiv.org/find/hep-ph/1/au:+Budker_D/0/1/0/all/0/1">Dmitry Budker</a>, <a href="http://arxiv.org/find/hep-ph/1/au:+Eby_J/0/1/0/all/0/1">Joshua Eby</a>, <a href="http://arxiv.org/find/hep-ph/1/au:+Kim_H/0/1/0/all/0/1">Hyungjin Kim</a>, <a href="http://arxiv.org/find/hep-ph/1/au:+Perez_G/0/1/0/all/0/1">Gilad Perez</a> The cosmological relaxion can address the hierarchy problem, while its coherent oscillations can constitute dark matter in the present universe. We consider the possibility that the relaxion forms gravitationally bound objects that we denote as relaxion stars. The density of these stars would be higher than that of the local dark matter density, resulting in enhanced signals for table-top detectors. Furthermore, we raise the possibility that these objects may be trapped by an external gravitational potential, such as that ofRead More →

Environmental Effect on the Interstellar Medium in Galaxies across the Cosmic Web at z=0.73. (arXiv:1902.08216v1 [astro-ph.GA]) <a href="http://arxiv.org/find/astro-ph/1/au:+Betti_S/0/1/0/all/0/1">S. K. Betti</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Pope_A/0/1/0/all/0/1">Alexandra Pope</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Scoville_N/0/1/0/all/0/1">N. Scoville</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Yun_M/0/1/0/all/0/1">Min S. Yun</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Aussel_H/0/1/0/all/0/1">H. Aussel</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kartaltepe_J/0/1/0/all/0/1">J. Kartaltepe</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Sheth_K/0/1/0/all/0/1">K. Sheth</a> We present new ALMA dust continuum observations of 101 $log(mathrm{M}_* / mathrm{M}_odot)$ > 9.5 galaxies in the COSMOS field to study the effect of environment on the interstellar medium at z ~ 0.7. At this redshift, our targets span a wide range of environments allowing for a diverse sample of galaxies with densities, $Sigma$ = 0.16-10.5 Mpc$^{-2}$ (per $Delta$ z = 0.024). Using the ALMA observations,Read More →

Slowing the Spins of Stellar Cores. (arXiv:1902.08227v1 [astro-ph.SR]) <a href="http://arxiv.org/find/astro-ph/1/au:+Fuller_J/0/1/0/all/0/1">Jim Fuller</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Piro_A/0/1/0/all/0/1">Anthony L. Piro</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Jermyn_A/0/1/0/all/0/1">Adam S. Jermyn</a> The angular momentum (AM) evolution of stellar interiors, along with the resulting rotation rates of stellar remnants, remains poorly understood. Asteroseismic measurements of red giant stars reveal that their cores rotate much faster than their surfaces, but much slower than theoretically predicted, indicating an unidentified source of AM transport operates in their radiative cores. Motivated by this, we investigate the magnetic Tayler instability and argue that it saturates when turbulent dissipation of the perturbed magnetic field energy is equal to magnetic energy generation via winding. ThisRead More →

Optimizing Sparse RFI Prediction using Deep Learning. (arXiv:1902.08244v1 [astro-ph.IM]) <a href="http://arxiv.org/find/astro-ph/1/au:+Kerrigan_J/0/1/0/all/0/1">Joshua Kerrigan</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Plante_P/0/1/0/all/0/1">Paul La Plante</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kohn_S/0/1/0/all/0/1">Saul Kohn</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Pober_J/0/1/0/all/0/1">Jonathan C. Pober</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Aguirre_J/0/1/0/all/0/1">James Aguirre</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Abdurashidova_Z/0/1/0/all/0/1">Zara Abdurashidova</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Alexander_P/0/1/0/all/0/1">Paul Alexander</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Ali_Z/0/1/0/all/0/1">Zaki S. Ali</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Balfour_Y/0/1/0/all/0/1">Yanga Balfour</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Beardsley_A/0/1/0/all/0/1">Adam P. Beardsley</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bernardi_G/0/1/0/all/0/1">Gianni Bernardi</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bowman_J/0/1/0/all/0/1">Judd D. Bowman</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bradley_R/0/1/0/all/0/1">Richard F. Bradley</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Burba_J/0/1/0/all/0/1">Jacob Burba</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Carilli_C/0/1/0/all/0/1">Chris L. Carilli</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Cheng_C/0/1/0/all/0/1">Carina Cheng</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+DeBoer_D/0/1/0/all/0/1">David R. DeBoer</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Dexter_M/0/1/0/all/0/1">Matt Dexter</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Acedo_E/0/1/0/all/0/1">Eloy de Lera Acedo</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Dillon_J/0/1/0/all/0/1">Joshua S. Dillon</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Estrada_J/0/1/0/all/0/1">Julia Estrada</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Ewall_Wice_A/0/1/0/all/0/1">Aaron Ewall-Wice</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Fagnoni_N/0/1/0/all/0/1">Nicolas Fagnoni</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Fritz_R/0/1/0/all/0/1">Randall Fritz</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Furlanetto_S/0/1/0/all/0/1">Steve R. Furlanetto</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Glendenning_B/0/1/0/all/0/1">Brian Glendenning</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Greig_B/0/1/0/all/0/1">Bradley Greig</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Grobbelaar_J/0/1/0/all/0/1">Jasper Grobbelaar</a>,Read More →

Forecasting Angular Cross Correlations Between Diffuse X-ray Emission and the Thermal Sunyaev-Zel’dovich Effect. (arXiv:1902.08268v1 [astro-ph.CO]) <a href="http://arxiv.org/find/astro-ph/1/au:+Lakey_V/0/1/0/all/0/1">Vincent Lakey</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Huffenberger_K/0/1/0/all/0/1">Kevin Huffenberger</a> X-ray emission and the thermal Sunyaev-Zel’dovich distortion to the Cosmic Microwave Background are two important handles on the gas content of the Universe. The cross-correlation between these effects eliminates noise bias and reduces observational systematic effects. Using analytic models for the cluster profile, we develop a halo model formalism to study this cross-correlation and apply it to forecast the signal-to-noise of upcoming measurements from eROSITA and the Simons Observatory. In the soft X-ray band (0.5–2 keV), we forecast a signal-to-noise of 174 for theRead More →

Gravitational waves from compact dark matter objects in the solar system. (arXiv:1902.08273v1 [gr-qc]) <a href="http://arxiv.org/find/gr-qc/1/au:+Horowitz_C/0/1/0/all/0/1">C. J. Horowitz</a>, <a href="http://arxiv.org/find/gr-qc/1/au:+Papa_M/0/1/0/all/0/1">M. A. Papa</a>, <a href="http://arxiv.org/find/gr-qc/1/au:+Reddy_S/0/1/0/all/0/1">S. Reddy</a> Dark matter could be composed of compact dark objects (CDOs). We find that a close binary of CDOs orbiting {it inside} solar system bodies can be a loud source of gravitational waves (GWs) for the LIGO and VIRGO detectors. An initial search of data from the first Advanced LIGO observing run (O1), sensitive to $h_0approx 10^{-24}$, rules out close binaries orbiting near the center of the Sun with GW frequencies (twice the orbital frequency) between 50 and 550 Hz and CDORead More →

Constraints on Superconducting Cosmic Strings from the Global $21$-cm Signal before Reionization. (arXiv:1902.08282v1 [astro-ph.CO]) <a href="http://arxiv.org/find/astro-ph/1/au:+Brandenberger_R/0/1/0/all/0/1">Robert Brandenberger</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Cyr_B/0/1/0/all/0/1">Bryce Cyr</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Shi_R/0/1/0/all/0/1">Rui Shi</a> Electromagnetic radiation from the cusp region of superconducting cosmic strings leads to a radio excess in the photon spectrum in the early universe and can produce a deep absorption feature in the global 21cm signal before the epoch of reionization. We study the constraints on the parameter space of superconducting strings which can be derived by demanding that the absorption feature is not larger in amplitude than what has recently been reported by the EDGES collaboration. Electromagnetic radiation from the cusp regionRead More →

Interior Structure for Supernova Remnants Evolving from Ejecta-Dominated to Sedov-Taylor Phase. (arXiv:1902.08284v1 [astro-ph.GA]) <a href="http://arxiv.org/find/astro-ph/1/au:+Leahy_D/0/1/0/all/0/1">D.A. Leahy</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Wang_Y/0/1/0/all/0/1">Yuyang Wang</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Lawton_B/0/1/0/all/0/1">Bryson Lawton</a> Supernova remnants (SNRs) evolve through different phases, from an early Ejecta-Dominated phase to a middle-aged Sedov-Taylor phase, and to late-age radiative and dissipation phases. Here we consider spherically symmetric SNR evolution prior to the radiative phases. Numerical calculations are carried out for the SNR interior structure of self-similar phases, and made freely available. Hydrodynamic simulations are carried out for the full SNR evolution prior to radiative losses. The SNR interior structure is analyzed to produce integrated properties which are useful in comparison toRead More →

Can a negative-mass cosmology explain dark matter and dark energy?. (arXiv:1902.08287v1 [astro-ph.CO]) <a href="http://arxiv.org/find/astro-ph/1/au:+Socas_Navarro_H/0/1/0/all/0/1">Hector Socas-Navarro</a> A recent work by Farnes (2018) proposed an alternative cosmological model in which both dark matter and dark energy are replaced with a single fluid of negative mass. This paper presents a critical review of that model. A number of problems and discrepancies with observations are identified. For instance, the predicted shape and density of galactic dark matter halos are incorrect. Also, halos would need to be less massive than the baryonic component or they would become gravitationally unstable. Perhaps the most challenging problem in this theory is the presenceRead More →

X-ray spectroscopy of the candidate AGN in Henize 2-10 and NGC 4178: Likely supernova remnants. (arXiv:1902.08293v1 [astro-ph.HE]) <a href="http://arxiv.org/find/astro-ph/1/au:+Hebbar_P/0/1/0/all/0/1">Pavan R. Hebbar</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Heinke_C/0/1/0/all/0/1">Craig O. Heinke</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Sivakoff_G/0/1/0/all/0/1">Gregory R. Sivakoff</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Shaw_A/0/1/0/all/0/1">Aarran W. Shaw</a> Black holes in dwarf/bulgeless galaxies play a crucial role in studying the co-evolution of galaxies and their central black holes. Identifying massive black holes in dwarf galaxies suggests that the growth of black holes could precede that of galaxies. However, some of the most intriguing candidate active galactic nuclei (AGN) in small galaxies have such low luminosities that the sample is vulnerable to contamination by other sources, such as supernova remnants. WeRead More →

Asteroseismology of massive stars with the TESS mission: the runaway Beta Cep pulsator PHL 346 = HN Aqr. (arXiv:1902.08312v1 [astro-ph.SR]) <a href="http://arxiv.org/find/astro-ph/1/au:+Handler_G/0/1/0/all/0/1">Gerald Handler</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Pigulski_A/0/1/0/all/0/1">Andrzej Pigulski</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Daszynska_Daszkiewicz_J/0/1/0/all/0/1">Jadwiga Daszy&#x144;ska-Daszkiewicz</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Irrgang_A/0/1/0/all/0/1">Andreas Irrgang</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kilkenny_D/0/1/0/all/0/1">David Kilkenny</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Guo_Z/0/1/0/all/0/1">Zhao Guo</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Przybilla_N/0/1/0/all/0/1">Norbert Przybilla</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Alicavus_F/0/1/0/all/0/1">Filiz Kahraman Ali&#xe7;avu&#x15f;</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kallinger_T/0/1/0/all/0/1">Thomas Kallinger</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Pascual_Granado_J/0/1/0/all/0/1">Javier Pascual-Granado</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Niemczura_E/0/1/0/all/0/1">Ewa Niemczura</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Rozanski_T/0/1/0/all/0/1">Tomasz R&#xf3;&#x17c;a&#x144;ski</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Chowdhury_S/0/1/0/all/0/1">Sowgata Chowdhury</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Buzasi_D/0/1/0/all/0/1">Derek L. Buzasi</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Mirouh_G/0/1/0/all/0/1">Giovanni M. Mirouh</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bowman_D/0/1/0/all/0/1">Dominic M. Bowman</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Johnston_C/0/1/0/all/0/1">Cole Johnston</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Pedersen_M/0/1/0/all/0/1">May G. Pedersen</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Simon_Diaz_S/0/1/0/all/0/1">Sergio Sim&#xf3;n-Diaz</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Moravveji_E/0/1/0/all/0/1">Ehsan Moravveji</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Gazeas_K/0/1/0/all/0/1">Kosmas Gazeas</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Cat_P/0/1/0/all/0/1">Peter De Cat</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Vanderspek_R/0/1/0/all/0/1">Roland K. Vanderspek</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Ricker_G/0/1/0/all/0/1">George R. Ricker</a> We report an analysis ofRead More →

The Spiral Structure of the Milky Way Galaxy from Radio Observations. (arXiv:1902.08325v1 [astro-ph.GA]) <a href="http://arxiv.org/find/astro-ph/1/au:+Alsobaie_J/0/1/0/all/0/1">Jawaher Alsobaie</a> The study of the Milky Way structure is vital importance for a better understanding of the universe. This study digs deeper into the structure of Milky Way Galaxys with emphasis to its spiral arms. Multiple data sources were sought including the NASA websites. As found out, the Milky Way is a disk shaped galaxy composed of four spiral arms, two large and the rest are smaller. The spiral arms are regions of actively forming new stars dominated by young stars, dust and gas. Dust and gas are primary materialsRead More →

A systematic study of ULIRGs using near-infrared absorption bands reveals a strong UV environment in their star-forming regions. (arXiv:1902.08326v1 [astro-ph.GA]) <a href="http://arxiv.org/find/astro-ph/1/au:+Doi_R/0/1/0/all/0/1">Ryosuke Doi</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Nakagawa_T/0/1/0/all/0/1">Takao Nakagawa</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Isobe_N/0/1/0/all/0/1">Naoki Isobe</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Baba_S/0/1/0/all/0/1">Shunsuke Baba</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Yano_K/0/1/0/all/0/1">Kenichi Yano</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Yamagishi_M/0/1/0/all/0/1">Mitsuyoshi Yamagishi</a> We present a systematic study of the 3.0 um H2O ice and the 3.4 um aliphatic carbon absorption features toward 48 local ultraluminous infrared galaxies (ULIRGs) using spectra obtained by the AKARI Infrared Camera to investigate the UV environment in their star-forming regions. All the ULIRGs in our sample exhibit a ratio of optical depth of H2O ice to silicate dust (tau3.0/tau9.7) that is lower than thatRead More →

On the Mean Radiative Efficiency of Accreting Massive Black Holes in AGNs And QSOs. (arXiv:1902.08332v1 [astro-ph.HE]) <a href="http://arxiv.org/find/astro-ph/1/au:+Zhang_X/0/1/0/all/0/1">Xiaoxia Zhang</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Lu_Y/0/1/0/all/0/1">Youjun Lu</a> Radiative efficiency is an important physical parameter that describes the fraction of accretion material converted to radiative energy for accretion onto massive black holes (MBHs). With the simplest So{l}tan argument, the radiative efficiency of MBHs can be estimated by matching the mass density of MBHs in the local universe to the accreted mass density by MBHs during AGN/QSO phases. In this paper, we estimate the local MBH mass density through a combination of various determinations of the correlations between the masses of MBHsRead More →

Thick Branes in Extra Dimensions and Suppressed Dark Couplings. (arXiv:1902.08339v1 [hep-ph]) <a href="http://arxiv.org/find/hep-ph/1/au:+Landim_R/0/1/0/all/0/1">Ricardo G. Landim</a>, <a href="http://arxiv.org/find/hep-ph/1/au:+Rizzo_T/0/1/0/all/0/1">Thomas G. Rizzo</a> In this paper we show that the interaction between new light dark matter mediators and the SM particles can be naturally suppressed if one employs a single, flat extra dimension (ED). In this setup, the SM fields are localized in a finite width `fat’ brane, similar to models of Universal Extra Dimensions (UED), while DM, in turn, is confined to a thin brane at the opposite end of the ED interval. Including brane localized kinetic terms on the fat brane for the mediator fields, the resultingRead More →

Tensile Strength of Porous Dust Aggregates. (arXiv:1902.08356v1 [astro-ph.EP]) <a href="http://arxiv.org/find/astro-ph/1/au:+Tatsuuma_M/0/1/0/all/0/1">Misako Tatsuuma</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kataoka_A/0/1/0/all/0/1">Akimasa Kataoka</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Tanaka_H/0/1/0/all/0/1">Hidekazu Tanaka</a> Comets are thought to have information about the formation process of our solar system. Recently, detailed information about comet 67P/Churyumov-Gerasimenko has been found by a spacecraft mission Rosetta. It is remarkable that its tensile strength was estimated. In this paper, we measure and formulate the tensile strength of porous dust aggregates using numerical simulations, motivated by porous dust aggregation model of planetesimal formation. We perform three-dimensional numerical simulations using a monomer interaction model with periodic boundary condition. We stretch out a dust aggregate with a various initial volumeRead More →

The 2018 X-ray and Radio Outburst of Magnetar XTE J1810-197. (arXiv:1902.08358v1 [astro-ph.HE]) <a href="http://arxiv.org/find/astro-ph/1/au:+Gotthelf_E/0/1/0/all/0/1">E.V. Gotthelf</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Halpern_J/0/1/0/all/0/1">J.P. Halpern</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Alford_J/0/1/0/all/0/1">J.A.J. Alford</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Mihara_T/0/1/0/all/0/1">T. Mihara</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Negoro_H/0/1/0/all/0/1">H. Negoro</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kawai_N/0/1/0/all/0/1">N. Kawai</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Dai_S/0/1/0/all/0/1">S. Dai</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Lower_M/0/1/0/all/0/1">M.E. Lower</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Johnston_S/0/1/0/all/0/1">S. Johnston</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bailes_M/0/1/0/all/0/1">M. Bailes</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Oslowski_S/0/1/0/all/0/1">S. Oslowski</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Camilo_F/0/1/0/all/0/1">F. Camilo</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Miyasaka_H/0/1/0/all/0/1">H. Miyasaka</a> We present the earliest X-ray observations of the 2018 outburst of XTE J1810-197, the first outburst since its 2003 discovery as the prototypical transient and radio-emitting anomalous X-ray pulsar (AXP). The Monitor of All-sky X-ray Image (MAXI) detected XTE J1810-197 immediately after a November 20-26 visibility gap, contemporaneous with its reactivation as a radioRead More →

RoboPol: A four-channel optical imaging polarimeter. (arXiv:1902.08367v1 [astro-ph.IM]) <a href="http://arxiv.org/find/astro-ph/1/au:+Ramaprakash_A/0/1/0/all/0/1">A. N. Ramaprakash</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Rajarshi_C/0/1/0/all/0/1">C. V. Rajarshi</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Das_H/0/1/0/all/0/1">H. K. Das</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Khodade_P/0/1/0/all/0/1">P. Khodade</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Modi_D/0/1/0/all/0/1">D. Modi</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Panopoulou_G/0/1/0/all/0/1">G. Panopoulou</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Maharana_S/0/1/0/all/0/1">S. Maharana</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Blinov_D/0/1/0/all/0/1">D. Blinov</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Angelakis_E/0/1/0/all/0/1">E. Angelakis</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Casadio_C/0/1/0/all/0/1">C. Casadio</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Fuhrmann_L/0/1/0/all/0/1">L. Fuhrmann</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Hovatta_T/0/1/0/all/0/1">T. Hovatta</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kiehlmann_S/0/1/0/all/0/1">S. Kiehlmann</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+King_O/0/1/0/all/0/1">O. G. King</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kylafis_N/0/1/0/all/0/1">N. Kylafis</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kougentakis_A/0/1/0/all/0/1">A. Kougentakis</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kus_A/0/1/0/all/0/1">A. Kus</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Mahabal_A/0/1/0/all/0/1">A. Mahabal</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Marecki_A/0/1/0/all/0/1">A. Marecki</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Myserlis_I/0/1/0/all/0/1">I. Myserlis</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Paterakis_G/0/1/0/all/0/1">G. Paterakis</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Paleologou_E/0/1/0/all/0/1">E. Paleologou</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Liodakis_I/0/1/0/all/0/1">I. Liodakis</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Papadakis_I/0/1/0/all/0/1">I. Papadakis</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Papamastorakis_I/0/1/0/all/0/1">I. Papamastorakis</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Pavlidou_V/0/1/0/all/0/1">V. Pavlidou</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Pazderski_E/0/1/0/all/0/1">E. Pazderski</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Pearson_T/0/1/0/all/0/1">T. J. Pearson</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Readhead_A/0/1/0/all/0/1">A. C. S. Readhead</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Reig_P/0/1/0/all/0/1">P. Reig</a>,Read More →