Cosmology with gravitationally lensed repeating Fast Radio Bursts. (arXiv:2004.11643v2 [astro-ph.CO] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Wucknitz_O/0/1/0/all/0/1">O. Wucknitz</a> (1), <a href="http://arxiv.org/find/astro-ph/1/au:+Spitler_L/0/1/0/all/0/1">L.G. Spitler</a> (1), <a href="http://arxiv.org/find/astro-ph/1/au:+Pen_U/0/1/0/all/0/1">U.-L. Pen</a> (2,3,4,5,1) ((1) Max-Planck-Institute for Radio Astronomy, (2) CITA, (3) Dunlap Institute, (4) CIFAR, (5) Perimeter Institute) High-precision cosmological probes have revealed a small but significant tension between the parameters measured with different techniques, among which there is one based on time delays in gravitational lenses. We discuss a new way of using time delays for cosmology, taking advantage of the extreme precision expected for lensed fast radio bursts (FRBs), which are short flashes of radio emission originating at cosmological distances. With coherent methods,Read More →

Reconstruction of Reionization History through Dispersion Measure of Fast Radio Bursts. (arXiv:2004.11276v3 [astro-ph.CO] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Dai_J/0/1/0/all/0/1">Ji-Ping Dai</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Xia_J/0/1/0/all/0/1">Jun-Qing Xia</a> In this paper, we study the evolution of the ionization fraction $x_e(z)$ during the epoch of reionization by using the dispersion measures (DM) of fast radio bursts (FRBs). Different from the previous studies, here we turn to consider the large-scale clustering information of observed DM of FRB catalog, which only needs the rough redshift distribution, instead of the exact redshift information of each FRB. Firstly, we consider the instantaneous “texttt{tanh}” model for $x_e(z)$ and find that including the auto-correlation information of the mock catalog, aboutRead More →

High-redshift star formation in the ALMA era. (arXiv:2004.00934v2 [astro-ph.GA] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Hodge_J/0/1/0/all/0/1">Jacqueline A. Hodge</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Cunha_E/0/1/0/all/0/1">Elisabete da Cunha</a> The Atacama Large Millimetre/submillimetre Array (ALMA) is currently in the process of transforming our view of star-forming galaxies in the distant ($zgtrsim1$) universe. Before ALMA, most of what we knew about dust-obscured star formation in distant galaxies was limited to the brightest submillimetre sources$-$the so-called submillimetre galaxies (SMGs)$-$and even the information on those sources was sparse, with resolved (i.e., sub-galactic) observations of the obscured star formation and gas reservoirs typically restricted to the most extreme and/or strongly lensed sources. Starting with the beginning of early science operationsRead More →

Phenomenological model explaining Hubble Tension origin. (arXiv:2002.05602v3 [astro-ph.CO] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Bisnovatyi_Kogan_G/0/1/0/all/0/1">G.S. Bisnovatyi-Kogan</a> One of the problem revealed recently in cosmology is a so-called Hubble tension (HT), which is the difference between values of the present Hubble constant, measured by observation of the universe at redshift $z lesssim 1$, and by observations of a distant universe with CMB fluctuations originated at $z sim 1100$. In this paper we suggest, that this discrepancy may be explained by deviation of the cosmological expansion from a standard Lambda-CDM %simple Friedman model of a flat universe, during the period after recombination at $z lesssim 1100$, due to action of additionalRead More →

Modeling Magnetohydrodynamic Equilibrium in Magnetars with Applications to Continuous Gravitational Wave Production. (arXiv:2002.02619v3 [astro-ph.SR] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Frederick_S/0/1/0/all/0/1">Samuel G. Frederick</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Thompson_K/0/1/0/all/0/1">Kristen L. Thompson</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kuchera_M/0/1/0/all/0/1">Michelle P. Kuchera</a> Possessing the strongest magnetic fields in the Universe, magnetars mark an extremum of physical phenomena. The strength of their magnetic fields is sufficient to deform the shape of the stellar body, and when the rotational and magnetic axes are not aligned, these deformations lead to the production of gravitational waves (GWs) via a time-varying quadrupole moment. Such gravitational radiation differs from signals presently detectable by the Laser Interferometer Gravitational-Wave Observatory. These signals are continuous rather than the momentaryRead More →

Constraints on galileons from the positions of supermassive black holes. (arXiv:2010.05811v2 [astro-ph.CO] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Bartlett_D/0/1/0/all/0/1">Deaglan J. Bartlett</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Desmond_H/0/1/0/all/0/1">Harry Desmond</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Ferreira_P/0/1/0/all/0/1">Pedro G. Ferreira</a> Galileons are scalar field theories which obey the Galileon symmetry $varphi to varphi + b + c_mu x^mu$ and are capable of self-acceleration if they have an inverted sign for the kinetic term. These theories violate the Strong Equivalence Principle, such that black holes (BHs) do not couple to the Galileon field, whereas non-relativistic objects experience a fifth force with strength $Delta G / G_{rm N}$ relative to gravity. For galaxies falling down a gradient in the Galileon field, this resultsRead More →

Optical-to-NIR magnitude measurements of the Starlink LEO Darksat satellite and effectiveness of the darkening treatment. (arXiv:2011.01820v2 [astro-ph.IM] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Tregloan_Reed_J/0/1/0/all/0/1">J. Tregloan-Reed</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Otarola_A/0/1/0/all/0/1">A. Otarola</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Unda_Sanzana_E/0/1/0/all/0/1">E. Unda-Sanzana</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Haeussler_B/0/1/0/all/0/1">B Haeussler</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Gaete_F/0/1/0/all/0/1">F. Gaete</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Colque_J/0/1/0/all/0/1">J. P. Colque</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Gonzalez_Fernandez_C/0/1/0/all/0/1">C. Gonz&#xe1;lez-Fern&#xe1;ndez</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Anais_J/0/1/0/all/0/1">J. Anais</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Molina_V/0/1/0/all/0/1">V. Molina</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Gonzalez_R/0/1/0/all/0/1">R. Gonz&#xe1;lez</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Ortiz_E/0/1/0/all/0/1">E. Ortiz</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Mieske_S/0/1/0/all/0/1">S. Mieske</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Brillant_S/0/1/0/all/0/1">S. Brillant</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Anderson_J/0/1/0/all/0/1">J. P. Anderson</a> Four observations of Starlink’s LEO communication satellites, Darksat and STARLINK-1113, were conducted on two nights with two telescopes. The Chakana 0.6,m telescope at the Ckoirama observatory (Chile) observed both satellites on 5,Mar,2020 (UTC) and 7,Mar,2020 (UTC) using a Sloan r’ and Sloan i’Read More →

Determining the Composition of Relativistic Jets from Polarization Maps. (arXiv:1909.09230v2 [astro-ph.HE] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Anantua_R/0/1/0/all/0/1">Richard Anantua</a> (Center for Astrophysics | Harvard and Smithsonian and Black Hole Initiative), <a href="http://arxiv.org/find/astro-ph/1/au:+Emami_R/0/1/0/all/0/1">Razieh Emami</a> (Center for Astrophysics | Harvard and Smithsonian), <a href="http://arxiv.org/find/astro-ph/1/au:+Loeb_A/0/1/0/all/0/1">Abraham Loeb</a> (Center for Astrophysics | Harvard and Smithsonian and Black Hole Initiative), <a href="http://arxiv.org/find/astro-ph/1/au:+Chael_A/0/1/0/all/0/1">Andrew Chael</a> (Princeton University) We present a stationary, axisymmetric, self-similar semi-analytic model of magnetically dominated jet plasma based on force-free regions of a relativistic magnetohydrodynamic simulation. We use this model to illustrate how the composition of relativistic jet plasma can be determined, with special attention to the example of M87. In particular, we computeRead More →

A prediction on the age of thick discs as a function of the stellar mass of the host galaxy. (arXiv:2101.04478v2 [astro-ph.GA] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Comeron_S/0/1/0/all/0/1">S. Comer&#xf3;n</a> One of the suggested thick disc formation mechanisms is that they were born quickly and in situ from a turbulent clumpy disc. Subsequently, thin discs formed slowly within them from leftovers of the turbulent phase and from material accreted through cold flows and minor mergers. In this letter, I propose an observational test to verify this hypothesis. By combining thick disc and total stellar masses of edge-on galaxies with galaxy stellar mass functions calculated in the redshift range of $zleq3.0$,Read More →

Test of the cosmic distance duality relation for arbitrary spatial curvature. (arXiv:2101.05574v2 [astro-ph.CO] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Qin_J/0/1/0/all/0/1">Jin Qin</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Melia_F/0/1/0/all/0/1">Fulvio Melia</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Zhang_T/0/1/0/all/0/1">Tong-Jie Zhang</a> The cosmic distance duality relation (CDDR), eta(z)=(1+z)^2 d_A(z)/d_L(z)=1, is one of the most fundamental and crucial formulae in cosmology. This relation couples the luminosity and angular diameter distances, two of the most often used measures of structure in the Universe. We here propose a new model-independent method to test this relation, using strong gravitational lensing (SGL) and the high-redshift quasar Hubble diagram reconstructed with a Bezier parametric fit. We carry out this test without pre-assuming a zero spatial curvature, adopting instead theRead More →

High Precision Measurements of Interstellar Dispersion Measure with the upgraded GMRT. (arXiv:2101.05334v2 [astro-ph.HE] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Krishnakumar_M/0/1/0/all/0/1">M. A. Krishnakumar</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Manoharan_P/0/1/0/all/0/1">P. K. Manoharan</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Joshi_B/0/1/0/all/0/1">Bhal Chandra Joshi</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Girgaonkar_R/0/1/0/all/0/1">Raghav Girgaonkar</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Desai_S/0/1/0/all/0/1">Shantanu Desai</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bagchi_M/0/1/0/all/0/1">Manjari Bagchi</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Nobleson_K/0/1/0/all/0/1">K. Nobleson</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Dey_L/0/1/0/all/0/1">Lankeswar Dey</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Susobhanan_A/0/1/0/all/0/1">Abhimanyu Susobhanan</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Susarla_S/0/1/0/all/0/1">Sai Chaitanya Susarla</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Surnis_M/0/1/0/all/0/1">Mayuresh P. Surnis</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Maan_Y/0/1/0/all/0/1">Yogesh Maan</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Gopakumar_A/0/1/0/all/0/1">A. Gopakumar</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Basu_A/0/1/0/all/0/1">Avishek Basu</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Batra_N/0/1/0/all/0/1">Neelam Dhanda Batra</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Choudhary_A/0/1/0/all/0/1">Arpita Choudhary</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+De_K/0/1/0/all/0/1">Kishalay De</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Gupta_Y/0/1/0/all/0/1">Yashwant Gupta</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Naidu_A/0/1/0/all/0/1">Arun Kumar Naidu</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Pathak_D/0/1/0/all/0/1">Dhruv Pathak</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Singha_J/0/1/0/all/0/1">Jaikhomba Singha</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Prabu_T/0/1/0/all/0/1">T. Prabu</a> Pulsar radio emission undergoes dispersion due to the presence of free electrons in the interstellar medium (ISM). TheRead More →

Positron Effects on Polarized Images and Spectra from Jet and Accretion Flow Models of M87 and Sgr A*. (arXiv:2101.05327v2 [astro-ph.HE] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Emami_R/0/1/0/all/0/1">Razieh Emami</a> (Center for Astrophysics | Harvard and Smithsonian), <a href="http://arxiv.org/find/astro-ph/1/au:+Anantua_R/0/1/0/all/0/1">Richard Anantua</a> (Center for Computational Astrophysics and Center for Astrophysics | Harvard and Smithsonian), <a href="http://arxiv.org/find/astro-ph/1/au:+Chael_A/0/1/0/all/0/1">Andrew A Chael</a> (Princeton University), <a href="http://arxiv.org/find/astro-ph/1/au:+Loeb_A/0/1/0/all/0/1">Abraham Loeb</a> (Center for Astrophysics | Harvard and Smithsonian) We consider the effects of including a nonzero positron-to-electron fraction in the emitting plasma in semi-analytic models for M87 and Sgr A* on the polarized near-horizon submillimeter images observed by the Event Horizon Telescope (EHT). Our model for M87 is a semi-analytic fitRead More →

A million binaries from Gaia eDR3: sample selection and validation of Gaia parallax uncertainties. (arXiv:2101.05282v2 [astro-ph.SR] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+El_Badry_K/0/1/0/all/0/1">Kareem El-Badry</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Rix_H/0/1/0/all/0/1">Hans-Walter Rix</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Heintz_T/0/1/0/all/0/1">Tyler M. Heintz</a> We construct from Gaia eDR3 an extensive catalog of spatially resolved binary stars within $approx$ 1 kpc of the Sun, with projected separations ranging from a few au to 1 pc. We estimate the probability that each pair is a chance alignment empirically, using the Gaia catalog itself to calculate the rate of chance alignments as a function of observables. The catalog contains 1.3 (1.1) million binaries with >90% (>99%) probability of being bound, including 16,000 white dwarfRead More →

Erupting Magnetic Flux Rope Affects Running Penumbral Waves. (arXiv:2101.04915v2 [astro-ph.SR] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Wang_W/0/1/0/all/0/1">Wensi Wang</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Liu_R/0/1/0/all/0/1">Rui Liu</a> It is well known that solar flares have broad impacts on the low atmosphere, but it is largely unknown how they affect sunspot waves and oscillations. It is also under debate as to whether the flare-induced photospheric changes are due to the momentum conservation with coronal mass ejections or due to magnetic reconnection. To shed light on the so-called “back reaction” of solar eruptions, we investigated how running penumbral waves (RPWs) at one foot of an erupting magnetic flux rope (MFR) responds to the rope buildup and subsequentRead More →

The Imprint of Large Scale Structure on the Ultra-High-Energy Cosmic Ray Sky. (arXiv:2101.04564v2 [astro-ph.HE] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Ding_C/0/1/0/all/0/1">Chen Ding</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Globus_N/0/1/0/all/0/1">Noemie Globus</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Farrar_G/0/1/0/all/0/1">Glennys R. Farrar</a> Ultra-high-energy cosmic rays (UHECRs) are atomic nuclei from space with vastly higher energies than any other particles ever observed. Their origin and chemical composition remain a mystery. As we show here, the large- and intermediate-angular-scale anisotropies observed by the Pierre Auger Observatory are a powerful tool for understanding the origin of UHECRs. Without specifying any particular production mechanism, but only postulating that the source distribution follows the matter distribution of the local Universe, a good accounting of the magnitude, directionRead More →

Small solar system objects on highly inclined orbits: Surface colours and lifetimes. (arXiv:2101.04541v2 [astro-ph.EP] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Hromakina_T/0/1/0/all/0/1">T. Hromakina</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Belskaya_I/0/1/0/all/0/1">I. Belskaya</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Krugly_Y/0/1/0/all/0/1">Yu. Krugly</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Rumyantsev_V/0/1/0/all/0/1">V. Rumyantsev</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Golubov_O/0/1/0/all/0/1">O. Golubov</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kyrylenko_I/0/1/0/all/0/1">I. Kyrylenko</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Ivanova_O/0/1/0/all/0/1">O. Ivanova</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Velichko_S/0/1/0/all/0/1">S. Velichko</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Izvekova_I/0/1/0/all/0/1">I. Izvekova</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Sergeyev_A/0/1/0/all/0/1">A. Sergeyev</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Slyusarev_I/0/1/0/all/0/1">I. Slyusarev</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Molotov_I/0/1/0/all/0/1">I. Molotov</a> Less than one percent of the discovered small solar system objects have highly inclined orbits ($i>60^{circ}$), and revolve around the Sun on near-polar or retrograde orbits. The origin and evolutionary history of these objects are not yet clear. In this work we study the surface properties and orbital dynamics of selected high-inclination objects. BVRIRead More →

TESS Delivers Five New Hot Giant Planets Orbiting Bright Stars from the Full Frame Images. (arXiv:2101.01726v2 [astro-ph.EP] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Rodriguez_J/0/1/0/all/0/1">Joseph E. Rodriguez</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Quinn_S/0/1/0/all/0/1">Samuel N. Quinn</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Zhou_G/0/1/0/all/0/1">George Zhou</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Vanderburg_A/0/1/0/all/0/1">Andrew Vanderburg</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Nielsen_L/0/1/0/all/0/1">Louise D. Nielsen</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Wittenmyer_R/0/1/0/all/0/1">Robert A. Wittenmyer</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Brahm_R/0/1/0/all/0/1">Rafael Brahm</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Reed_P/0/1/0/all/0/1">Phillip A. Reed</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Huang_C/0/1/0/all/0/1">Chelsea X. Huang</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Vach_S/0/1/0/all/0/1">Sydney Vach</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Ciardi_D/0/1/0/all/0/1">David R. Ciardi</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Oelkers_R/0/1/0/all/0/1">Ryan J. Oelkers</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Stassun_K/0/1/0/all/0/1">Keivan G. Stassun</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Hellier_C/0/1/0/all/0/1">Coel Hellier</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Gaudi_B/0/1/0/all/0/1">B. Scott Gaudi</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Eastman_J/0/1/0/all/0/1">Jason D. Eastman</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Collins_K/0/1/0/all/0/1">Karen A. Collins</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bieryla_A/0/1/0/all/0/1">Allyson Bieryla</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Christian_S/0/1/0/all/0/1">Sam Christian</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Latham_D/0/1/0/all/0/1">David W. Latham</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Wright_D/0/1/0/all/0/1">Duncan J. Wright</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Matthews_E/0/1/0/all/0/1">Elisabeth Matthews</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Gonzales_E/0/1/0/all/0/1">Erica J. Gonzales</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Ziegler_C/0/1/0/all/0/1">Carl Ziegler</a>,Read More →

Evolution of dissipative and non-dissipative universes in holographic cosmological models with a power-law term. (arXiv:2011.06276v3 [gr-qc] UPDATED) <a href="http://arxiv.org/find/gr-qc/1/au:+Komatsu_N/0/1/0/all/0/1">Nobuyoshi Komatsu</a> Density perturbations related to structure formations are expected to be different in dissipative and non-dissipative universes, even if the background evolution of the two universes is the same. To clarify the difference between the two universes, first-order density perturbations are studied, using two types of holographic cosmological models. The first type is a “$Lambda(t)$ model” similar to a time-varying $Lambda(t)$ cosmology for the non-dissipative universe. The second type is a “BV model” similar to a bulk viscous cosmology for the dissipative universe. To systematically examineRead More →

Discovery of a Supercluster in the eROSITA Final Equatorial Depth Survey: X-ray Properties, Radio Halo, and Double Relics. (arXiv:2012.11607v2 [astro-ph.CO] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Ghirardini_V/0/1/0/all/0/1">V. Ghirardini</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bulbul_E/0/1/0/all/0/1">E. Bulbul</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Hoang_D/0/1/0/all/0/1">D. N. Hoang</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Klein_M/0/1/0/all/0/1">M. Klein</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Okabe_N/0/1/0/all/0/1">N. Okabe</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Biffi_V/0/1/0/all/0/1">V. Biffi</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bruggen_M/0/1/0/all/0/1">M. Bruggen</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Ramos_Ceja_M/0/1/0/all/0/1">M. E. Ramos-Ceja</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Comparat_J/0/1/0/all/0/1">J. Comparat</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Oguri_M/0/1/0/all/0/1">M. Oguri</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Shimwell_T/0/1/0/all/0/1">T. W. Shimwell</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Basu_K/0/1/0/all/0/1">K. Basu</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bonafede_A/0/1/0/all/0/1">A. Bonafede</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Botteon_A/0/1/0/all/0/1">A. Botteon</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Brunetti_G/0/1/0/all/0/1">G. Brunetti</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Cassano_R/0/1/0/all/0/1">R. Cassano</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Gasperin_F/0/1/0/all/0/1">F. de Gasperin</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Dennerl_K/0/1/0/all/0/1">K. Dennerl</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Gatuzz_E/0/1/0/all/0/1">E. Gatuzz</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Gastaldello_F/0/1/0/all/0/1">F. Gastaldello</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Intema_H/0/1/0/all/0/1">H. Intema</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Merloni_A/0/1/0/all/0/1">A. Merloni</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Nandra_K/0/1/0/all/0/1">K. Nandra</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Pacaud_F/0/1/0/all/0/1">F. Pacaud</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Predehl_P/0/1/0/all/0/1">P. Predehl</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Reiprich_T/0/1/0/all/0/1">T. H. Reiprich</a>, <aRead More →

Kilobyte Cosmic Birefringence from ALP Domain Walls. (arXiv:2012.11576v2 [hep-ph] UPDATED) <a href="http://arxiv.org/find/hep-ph/1/au:+Takahashi_F/0/1/0/all/0/1">Fuminobu Takahashi</a>, <a href="http://arxiv.org/find/hep-ph/1/au:+Yin_W/0/1/0/all/0/1">Wen Yin</a> ALP domain walls without strings may be formed in the early Universe. We point out that such ALP domain walls lead to both isotropic and anisotropic birefringence of cosmic microwave background (CMB) polarization, which reflects spatial configuration of the domain walls at the recombination. The polarization plane of the CMB photon coming from each domain is either not rotated at all or rotated by a fixed angle. For domain walls following the scaling solution, the cosmic birefringence of CMB is characterized by $2^{N}$, i.e. $N$-bit, of information with $NRead More →