Redshift evolution of the underlying type Ia supernova stretch distribution. (arXiv:2005.09441v2 [astro-ph.CO] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Nicolas_N/0/1/0/all/0/1">N. Nicolas</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Rigault_M/0/1/0/all/0/1">M. Rigault</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Copin_Y/0/1/0/all/0/1">Y. Copin</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Graziani_R/0/1/0/all/0/1">R. Graziani</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Aldering_G/0/1/0/all/0/1">G. Aldering</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Briday_M/0/1/0/all/0/1">M. Briday</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Nordin_J/0/1/0/all/0/1">J. Nordin</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kim_Y/0/1/0/all/0/1">Y.-L. Kim</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Perlmutter_S/0/1/0/all/0/1">S. Perlmutter</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Smith_M/0/1/0/all/0/1">M. Smith</a> The detailed nature of type Ia supernovae (SNe Ia) remains uncertain, and as survey statistics increase, the question of astrophysical systematic uncertainties arises, notably that of the evolution of SN Ia populations. We study the dependence on redshift of the SN Ia light-curve stretch, a purely intrinsic SN property, to probe its potential redshift drift. The SN stretch has been shown toRead More →

Astraeus II: Quantifying the impact of cosmic variance during the Epoch of Reionization. (arXiv:2004.11096v2 [astro-ph.GA] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Ucci_G/0/1/0/all/0/1">Graziano Ucci</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Dayal_P/0/1/0/all/0/1">Pratika Dayal</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Hutter_A/0/1/0/all/0/1">Anne Hutter</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Yepes_G/0/1/0/all/0/1">Gustavo Yepes</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Gottlober_S/0/1/0/all/0/1">Stefan Gottl&#xf6;ber</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Legrand_L/0/1/0/all/0/1">Laurent Legrand</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Pentericci_L/0/1/0/all/0/1">Laura Pentericci</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Castellano_M/0/1/0/all/0/1">Marco Castellano</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Choudhury_T/0/1/0/all/0/1">Tirthankar Roy Choudhury</a> Next generation telescopes such as the James Webb Space Telescope (JWST) and the Nancy Grace Roman Space Telescope (NGRST) will enable us to study the first billion years of our Universe in unprecedented detail. In this work we use the ASTRAEUS (semi-numerical rAdiative tranSfer coupling of galaxy formaTion and Reionization in N-body dArk mattEr simUlationS) framework, that couples galaxy formation andRead More →

Bounds on the Horndeski Gauge-Gravity Coupling. (arXiv:2002.11932v2 [astro-ph.CO] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Allahyari_A/0/1/0/all/0/1">Alireza Allahyari</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Gorji_M/0/1/0/all/0/1">Mohammad Ali Gorji</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Mukohyama_S/0/1/0/all/0/1">Shinji Mukohyama</a> The Horndeski gauge-gravity coupling is the leading non-minimal interaction between gravity and gauge bosons, and it preserves all the symmetries and the number of physical degrees of freedom of the standard model of particle physics and general relativity. In this paper we study the effects of the non-minimal interaction in astronomy and cosmology, and obtain upper bounds on the associated dimensionless coupling constant $lambda$. From the modification of equations of motion of gauge bosons applied to compact astronomical objects, we find upper bounds $|lambda| lesssim 10^{88}$,Read More →

Core-collapse supernovae stymie secret neutrino interactions. (arXiv:1912.09115v2 [astro-ph.HE] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Shalgar_S/0/1/0/all/0/1">Shashank Shalgar</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Tamborra_I/0/1/0/all/0/1">Irene Tamborra</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bustamante_M/0/1/0/all/0/1">Mauricio Bustamante</a> Beyond-the-Standard-Model interactions of neutrinos among themselves — {it secret interactions} — in the supernova core may prevent the shock revival, halting the supernova explosion. Besides, if supernova neutrinos en route to Earth undergo secret interactions with relic neutrinos, the neutrino burst reaching Earth may be down-scattered in energy, falling below the detection threshold. We probe secret neutrino interactions through supernova neutrinos and apply our findings to the supernova SN 1987A. We place the most stringent bounds on flavor-universal secret interactions occurring through a new mediator with massRead More →

Effects of oscillating spacetime metric background on a complex scalar field and formation of topological vortices. (arXiv:1911.13216v4 [hep-th] UPDATED) <a href="http://arxiv.org/find/hep-th/1/au:+Dave_S/0/1/0/all/0/1">Shreyansh S. Dave</a>, <a href="http://arxiv.org/find/hep-th/1/au:+Digal_S/0/1/0/all/0/1">Sanatan Digal</a> We study the time evolution of a complex scalar field in the symmetry broken phase in the presence of oscillating spacetime metric background. In our (2+1)-dimensional simulations, we show that the spacetime oscillations can excite an initial field configuration, which ultimately leads to the formation of topological vortices in the system. At late times, field configuration achieves a disordered state. A detailed study of the momentum and frequency modes of the field reveals that these field excitations are drivenRead More →

Voyage through the Hidden Physics of the Cosmic Web. (arXiv:1908.01778v2 [astro-ph.CO] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Simionescu_A/0/1/0/all/0/1">A. Simionescu</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Ettori_S/0/1/0/all/0/1">S. Ettori</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Werner_N/0/1/0/all/0/1">N. Werner</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Nagai_D/0/1/0/all/0/1">D. Nagai</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Vazza_F/0/1/0/all/0/1">F. Vazza</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Akamatsu_H/0/1/0/all/0/1">H. Akamatsu</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Pinto_C/0/1/0/all/0/1">C. Pinto</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Plaa_J/0/1/0/all/0/1">J. de Plaa</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Wijers_N/0/1/0/all/0/1">N. Wijers</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Nelson_D/0/1/0/all/0/1">D. Nelson</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Pointecouteau_E/0/1/0/all/0/1">E. Pointecouteau</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Pratt_G/0/1/0/all/0/1">G. W. Pratt</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Spiga_D/0/1/0/all/0/1">D. Spiga</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Vacanti_G/0/1/0/all/0/1">G. Vacanti</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Lau_E/0/1/0/all/0/1">E. Lau</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Rossetti_M/0/1/0/all/0/1">M. Rossetti</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Gastaldello_F/0/1/0/all/0/1">F. Gastaldello</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Biffi_V/0/1/0/all/0/1">V. Biffi</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bulbul_E/0/1/0/all/0/1">E. Bulbul</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Collon_M/0/1/0/all/0/1">M. J. Collon</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Herder_J/0/1/0/all/0/1">J. W. den Herder</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Eckert_D/0/1/0/all/0/1">D. Eckert</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Fraternali_F/0/1/0/all/0/1">F. Fraternali</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Mingo_B/0/1/0/all/0/1">B. Mingo</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Pareschi_G/0/1/0/all/0/1">G. Pareschi</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Pezzulli_G/0/1/0/all/0/1">G. Pezzulli</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Reiprich_T/0/1/0/all/0/1">T. H. Reiprich</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Schaye_J/0/1/0/all/0/1">J. Schaye</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Walker_S/0/1/0/all/0/1">S. A.Read More →

Big Bang nucleosynthesis in a weakly non-ideal plasma. (arXiv:1812.09472v2 [astro-ph.CO] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Jang_D/0/1/0/all/0/1">Dukjae Jang</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kwon_Y/0/1/0/all/0/1">Youngshin Kwon</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kwak_K/0/1/0/all/0/1">Kyujin Kwak</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Cheoun_M/0/1/0/all/0/1">Myung-Ki Cheoun</a> We propose a correction of the standard Big Bang nucleosynthesis (BBN) scenario to resolve the primordial lithium problem by considering a possibility that the primordial plasma can deviate from the ideal state. In the standard BBN, the primordial plasma is assumed to be ideal, with particles and photons satisfying the Maxwell-Boltzmann and Planck distribution, respectively. We suggest that this assumption of the primordial plasma being ideal might oversimplify the early Universe and cause the lithium problem. We find that deviation of photonRead More →

Probing Fundamental Physics with Gravitational Waves. (arXiv:2010.04745v2 [gr-qc] UPDATED) <a href="http://arxiv.org/find/gr-qc/1/au:+Carson_Z/0/1/0/all/0/1">Zack Carson</a> The explosive coalescence of two black holes 1.3 billion light years away has for the very first time allowed us to peer into the extreme gravity region of spacetime surrounding these events. With these maximally compact objects reaching speeds up to 60% the speed of light, collision events such as these create harsh spacetime environments where the fields are strong, non-linear, and highly dynamical — a place yet un-probed in human history. On September 14, 2015, the iconic chirp signal from such an event was registered simultaneously by both of the Laser InterferometerRead More →

3D Simulations and MLT: II. Onsager’s Ideal Turbulence. (arXiv:1810.04659v4 [astro-ph.SR] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Arnett_W/0/1/0/all/0/1">W. David Arnett</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Hirschi_R/0/1/0/all/0/1">Raphael Hirschi</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Campbell_S/0/1/0/all/0/1">Simon W. Campbell</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Mocak_M/0/1/0/all/0/1">Miroslav Moc&#xe1;k</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Georgy_C/0/1/0/all/0/1">Cyril Georgy</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Meakin_C/0/1/0/all/0/1">Casey Meakin</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Cristini_A/0/1/0/all/0/1">Andrea Cristini</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Scott_L/0/1/0/all/0/1">Laura J. A. Scott</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kaiser_E/0/1/0/all/0/1">Etienne A. Kaiser</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Viallet_M/0/1/0/all/0/1">Maxime Viallet</a> We simulate stellar convection at high Reynolds number (Re$lesssim$7000) with causal time stepping but no explicit viscosity. We use the 3D Euler equations with shock capturing (Colella & Woodward 1984). Anomalous dissipation of turbulent kinetic energy occurs as an emergent feature of advection (“Onsager damping”), caused by the moderate shocks which terminate the turbulent kinetic energy spectrum; see alsoRead More →

Termination shock thermal processes as a possible source for the CMB low-order multipole anomalies: updated with observations. (arXiv:0906.1752v2 [astro-ph.CO] UPDATED) <a href="http://arxiv.org/find/astro-ph/1/au:+Sharpe_H/0/1/0/all/0/1">H.N.Sharpe</a> We discuss the possibility that the observed low-order multipole features of the cosmic microwave background radiation (CMB) all originate in the termination shock (TS) region of the heliosheath that surrounds the solar system. If the intrinsic CMB spectrum is assumed to be a pure monopole (2.73K) then thermodynamic processes occurring within the plasma region of the TS could imprint the observed power spectrum of the low-order multipoles and their alignment (the so-called “axis of evil”) onto this background isotropic CMB. Conditions are outlinedRead More →

Evaporation of dark matter from celestial bodies. (arXiv:2104.12757v1 [hep-ph]) <a href="http://arxiv.org/find/hep-ph/1/au:+Garani_R/0/1/0/all/0/1">Raghuveer Garani</a> (INFN, Florence), <a href="http://arxiv.org/find/hep-ph/1/au:+Palomares_Ruiz_S/0/1/0/all/0/1">Sergio Palomares-Ruiz</a> (IFIC, Valencia U. – CSIC) Scatterings of galactic dark matter (DM) particles with the constituents of celestial bodies could result in their accumulation within these objects. Nevertheless, the finite temperature of the medium sets a minimum mass, the evaporation mass, that DM particles must have in order to remain trapped. DM particles below this mass are very likely to scatter to speeds higher than the escape velocity, so they would be kicked out of the capturing object and escape. Here, we compute the DM evaporation mass for allRead More →

Smallest, Closest Black Hole Ever Discovered is Only 1,500 Light-Years Away In theory, a black hole is easy to make. Simply take a lump of matter, squeeze it into a sphere with a radius smaller than the Schwarzschild radius, and poof! You have a black hole. In practice, things aren’t so easy. When you squeeze matter, it pushes back, so it takes a star’s worth of weight to squeeze hard enough. Because of this, it’s generally thought that even the smallest black holes must be at least 5 solar masses in size. But a recent study shows the lower bound might be even smaller. TheRead More →

‘Campfires’ offer clue to solar heating mystery Computer simulations show that the miniature solar flares nicknamed ‘campfires,” discovered last year by ESA’s Solar Orbiter, are likely driven by a process that may contribute significantly to the heating of the sun’s outer atmosphere, or corona. If confirmed by further observations this adds a key piece to the puzzle of what heats the solar corona—one of the biggest mysteries in solar physics. phys.org Go to SourceRead More →

Astronomers detect new chemical signature in an exoplanet’s atmosphere using Subaru Telescope An international collaboration of astronomers led by a researcher from the Astrobiology Center and Queen’s University Belfast has detected a new chemical signature in the atmosphere of an extrasolar planet—i.e., a planet that orbits a star other than our sun. The hydroxyl radical (OH) was found on the dayside of the exoplanet WASP-33b. This planet is a so-called ‘ultra-hot Jupiter,” a gas-giant planet orbiting its host star much closer than Mercury orbits the sun (Figure 1) and therefore reaching atmospheric temperatures of more than 2500 degrees C (hot enough to melt most metals).Read More →

Chinese astronomers investigate black hole X-ray binary MAXI J1820+070 Astronomers from China have performed a comprehensive multiwavelength monitoring of a low-mass black hole X-ray binary system known as MAXI J1820+070. Results of this study, published April 21 on the arXiv pre-print repository, shed more light on the properties of this source. phys.org Go to SourceRead More →

Euclid: Estimation of the impact of correlated readout noise for flux measurements with the Euclid NISP instrument. (arXiv:2104.12752v1 [astro-ph.IM]) <a href="http://arxiv.org/find/astro-ph/1/au:+Munoz_A/0/1/0/all/0/1">A. Jimenez Munoz</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Macias_Perez_J/0/1/0/all/0/1">J. Macias-Perez</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Secroun_A/0/1/0/all/0/1">A. Secroun</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Gillard_W/0/1/0/all/0/1">W. Gillard</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kubik_B/0/1/0/all/0/1">B. Kubik</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Auricchio_N/0/1/0/all/0/1">N. Auricchio</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Balestra_A/0/1/0/all/0/1">A. Balestra</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bodendorf_C/0/1/0/all/0/1">C. Bodendorf</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bonino_D/0/1/0/all/0/1">D. Bonino</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Branchini_E/0/1/0/all/0/1">E. Branchini</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Brescia_M/0/1/0/all/0/1">M. Brescia</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Brinchmann_J/0/1/0/all/0/1">J. Brinchmann</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Capobianco_V/0/1/0/all/0/1">V. Capobianco</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Carbone_C/0/1/0/all/0/1">C. Carbone</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Carretero_J/0/1/0/all/0/1">J. Carretero</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Casas_R/0/1/0/all/0/1">R. Casas</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Castellano_M/0/1/0/all/0/1">M. Castellano</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Cavuoti_S/0/1/0/all/0/1">S. Cavuoti</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Cimatti_A/0/1/0/all/0/1">A. Cimatti</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Cledassou_R/0/1/0/all/0/1">R. Cledassou</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Congedo_G/0/1/0/all/0/1">G. Congedo</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Conversi_L/0/1/0/all/0/1">L. Conversi</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Copin_Y/0/1/0/all/0/1">Y. Copin</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Corcione_L/0/1/0/all/0/1">L. Corcione</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Costille_A/0/1/0/all/0/1">A. Costille</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Cropper_M/0/1/0/all/0/1">M. Cropper</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Degaudenzi_H/0/1/0/all/0/1">H. Degaudenzi</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Douspis_M/0/1/0/all/0/1">M. Douspis</a>, <aRead More →

Optimal survey parameters: Ly$alpha$ and H$alpha$ intensity mapping for synergy with the 21cm signal during reionization. (arXiv:2104.12739v1 [astro-ph.CO]) <a href="http://arxiv.org/find/astro-ph/1/au:+Heneka_C/0/1/0/all/0/1">Caroline Heneka</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Cooray_A/0/1/0/all/0/1">Asantha Cooray</a> Intensity mapping of multiple emission lines is emerging as a new branch to astronomy, to probe both properties of ionizing sources and the medium between, in particular the intergalactic medium. For Epoch of Reionization (EoR) studies, both multi-line experiments and analysis methods are still in their infancy. Here we explore optimal survey parameters for Ly$alpha$ (and H$alpha$) intensity mapping up to high redshifts of reionization, and requirements for optimised synergy with 21cm experiments. We investigate line sensitivity, spectral resolution and detectorRead More →

The Puzzling Origin of Massive Compact Galaxies in MaNGA. (arXiv:2104.12737v1 [astro-ph.GA]) <a href="http://arxiv.org/find/astro-ph/1/au:+Schnorr_Muller_A/0/1/0/all/0/1">A. Schnorr-M&#xfc;ller</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Trevisan_M/0/1/0/all/0/1">M. Trevisan</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Riffel_R/0/1/0/all/0/1">R. Riffel</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Chies_Santos_A/0/1/0/all/0/1">A. L. Chies-Santos</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Furlanetto_C/0/1/0/all/0/1">C. Furlanetto</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Ricci_T/0/1/0/all/0/1">T. V. Ricci</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Lohmann_F/0/1/0/all/0/1">F. S. Lohmann</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Flores_Freitas_R/0/1/0/all/0/1">R. Flores-Freitas</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Mallmann_N/0/1/0/all/0/1">N. D. Mallmann</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Alamo_Martinez_K/0/1/0/all/0/1">K. A. Alamo-Mart&#xed;nez</a> We characterized the kinematics, morphology, and stellar population (SP) properties of a sample of massive compact quiescent galaxies (MCGs) in the MaNGA Survey (DR15), with the goal of constraining their formation, assembly history and assessing their relation with non-compact quiescent galaxies. We compared their properties with those of a control sample of median-sized quiescent galaxies with similar effective velocityRead More →

VERITAS Observations of the Galactic Center Region at Multi-TeV Gamma-Ray Energies. (arXiv:2104.12735v1 [astro-ph.HE]) <a href="http://arxiv.org/find/astro-ph/1/au:+Adams_C/0/1/0/all/0/1">C. B. Adams</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Benbow_W/0/1/0/all/0/1">W. Benbow</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Brill_A/0/1/0/all/0/1">A. Brill</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Brose_R/0/1/0/all/0/1">R. Brose</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Buchovecky_M/0/1/0/all/0/1">M. Buchovecky</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Capasso_M/0/1/0/all/0/1">M. Capasso</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Christiansen_J/0/1/0/all/0/1">J. L. Christiansen</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Chromey_A/0/1/0/all/0/1">A. J. Chromey</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Daniel_M/0/1/0/all/0/1">M. K. Daniel</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Errando_M/0/1/0/all/0/1">M. Errando</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Falcone_A/0/1/0/all/0/1">A. Falcone</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Feng_Q/0/1/0/all/0/1">Q. Feng</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Finley_J/0/1/0/all/0/1">J. P. Finley</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Fortson_L/0/1/0/all/0/1">L. Fortson</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Furniss_A/0/1/0/all/0/1">A. Furniss</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Gent_A/0/1/0/all/0/1">A. Gent</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Gillanders_G/0/1/0/all/0/1">G. H. Gillanders</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Giuri_C/0/1/0/all/0/1">C. Giuri</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Hanna_D/0/1/0/all/0/1">D. Hanna</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Hervet_O/0/1/0/all/0/1">O. Hervet</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Holder_J/0/1/0/all/0/1">J. Holder</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Hughes_G/0/1/0/all/0/1">G. Hughes</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Humensky_T/0/1/0/all/0/1">T. B. Humensky</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Jin_W/0/1/0/all/0/1">W. Jin</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kaaret_P/0/1/0/all/0/1">P. Kaaret</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kelley_Hoskins_N/0/1/0/all/0/1">N. Kelley-Hoskins</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kertzman_M/0/1/0/all/0/1">M. Kertzman</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kieda_D/0/1/0/all/0/1">D. Kieda</a>, <aRead More →