Ancient stellar populations in the outskirts of nearby grand-design spirals: Investigation of their star formation histories
Cristina Maria Lofaro, Giulia Rodighiero, Andrea Enia, Ariel Werle, Laura Bisigello, Paolo Cassata, Viviana Casasola, Alvio Renzini, Letizia Scaloni, Alessandro Bianchetti
arXiv:2403.18156v1 Announce Type: new
Abstract: The main sequence (MS) of star-forming galaxies (SFGs) is the tight relation between the galaxy stellar mass and its star formation rate (SFR) and was observed up to z ~ 6. The MS relation can be used as a reference for understanding the differences among galaxies, characterised by different rates of stellar production (starbursts, SFGs, and passive galaxies), and those inside a galaxy made up of different components (bulge, disk, and halo). To investigate peculiar features found in our sample galaxies, we focus here on their star formation history (SFH). We performed a spectral energy distribution fitting procedure that accounted for the energetic balance between UV and far-IR radiation on a sample of eight nearby face-on spiral galaxies from the DustPedia sample. This approach allowed us to study the spatially resolved MS of the sample and to recover the past SFH. By exploiting the BAGPIPES code, we constrained the SFHs for each galaxy with a delayed exponentially declining model to derive their mass-weighted age (tMW). A central old region (tMW up to~7Gyr, consistent with the presence of a bulge for various systems) is followed by younger regions in which the disks are still forming stars (tMW~4Gyr). At larger distances, tMW increases mildly in general. Strikingly, in two galaxies (NGC4321 and NGC5194), we found a steep increase in tMW that reached levels similar to those of the bulge. These old stellar populations in the very galaxy outskirts are unexpected. We discuss their potential origin by considering the different gas phases of the source with the most prominent quenched ring, NGC4321, and argue for two main possibilities: 1) some environmental effect (e.g. starvation) or 2) the circumgalactic medium of sources outside of high-density clusters might have stopped to supply pristine gas to the galaxy (e.g. if its specific angular moment is too high for being accreted).arXiv:2403.18156v1 Announce Type: new
Abstract: The main sequence (MS) of star-forming galaxies (SFGs) is the tight relation between the galaxy stellar mass and its star formation rate (SFR) and was observed up to z ~ 6. The MS relation can be used as a reference for understanding the differences among galaxies, characterised by different rates of stellar production (starbursts, SFGs, and passive galaxies), and those inside a galaxy made up of different components (bulge, disk, and halo). To investigate peculiar features found in our sample galaxies, we focus here on their star formation history (SFH). We performed a spectral energy distribution fitting procedure that accounted for the energetic balance between UV and far-IR radiation on a sample of eight nearby face-on spiral galaxies from the DustPedia sample. This approach allowed us to study the spatially resolved MS of the sample and to recover the past SFH. By exploiting the BAGPIPES code, we constrained the SFHs for each galaxy with a delayed exponentially declining model to derive their mass-weighted age (tMW). A central old region (tMW up to~7Gyr, consistent with the presence of a bulge for various systems) is followed by younger regions in which the disks are still forming stars (tMW~4Gyr). At larger distances, tMW increases mildly in general. Strikingly, in two galaxies (NGC4321 and NGC5194), we found a steep increase in tMW that reached levels similar to those of the bulge. These old stellar populations in the very galaxy outskirts are unexpected. We discuss their potential origin by considering the different gas phases of the source with the most prominent quenched ring, NGC4321, and argue for two main possibilities: 1) some environmental effect (e.g. starvation) or 2) the circumgalactic medium of sources outside of high-density clusters might have stopped to supply pristine gas to the galaxy (e.g. if its specific angular moment is too high for being accreted).