A novel two-field pure K-essence for inflation, dark matter, dark energy and black holes

K-essence theories are usually studied in the framework of one scalar field $phi$. Namely, the Lagrangian of K-essence is the function of scalar field $phi$ and its covariant derivative. However, in this paper, we explore a two-field pure K-essence, i.e. the corresponding Lagrangian is the function of covariant derivatives of two scalar fields without the dependency of scalar fields themselves. That is why we call it pure K-essence. The novelty of this K-essence is that its Lagrangian contains the quotient term of the kinetic energies from the two scalar fields. This results in the presence of many interesting features, for example, the equation of state can be arbitrarily small and arbitrarily large. As a comparison, the range for equation of state of quintessence is from $-1$ to $+1$. Interestingly, this novel K-essence can play the role of inflation field, dark matter and dark energy. Finally, the absence of the scalar fields themselves in the equations of motion makes the study considerable simple such that even the exact black hole solutions can be found.K-essence theories are usually studied in the framework of one scalar field $phi$. Namely, the Lagrangian of K-essence is the function of scalar field $phi$ and its covariant derivative. However, in this paper, we explore a two-field pure K-essence, i.e. the corresponding Lagrangian is the function of covariant derivatives of two scalar fields without the dependency of scalar fields themselves. That is why we call it pure K-essence. The novelty of this K-essence is that its Lagrangian contains the quotient term of the kinetic energies from the two scalar fields. This results in the presence of many interesting features, for example, the equation of state can be arbitrarily small and arbitrarily large. As a comparison, the range for equation of state of quintessence is from $-1$ to $+1$. Interestingly, this novel K-essence can play the role of inflation field, dark matter and dark energy. Finally, the absence of the scalar fields themselves in the equations of motion makes the study considerable simple such that even the exact black hole solutions can be found.