In situ, broadband measurement of the radio frequency attenuation length at Summit Station, Greenland. (arXiv:2201.07846v2 [astro-ph.IM] UPDATED)
<a href="http://arxiv.org/find/astro-ph/1/au:+Aguilar_J/0/1/0/all/0/1">J. A. Aguilar</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Allison_P/0/1/0/all/0/1">P. Allison</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Beatty_J/0/1/0/all/0/1">J. J. Beatty</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Besson_D/0/1/0/all/0/1">D. Besson</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bishop_A/0/1/0/all/0/1">A. Bishop</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Botner_O/0/1/0/all/0/1">O. Botner</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bouma_S/0/1/0/all/0/1">S. Bouma</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Buitink_S/0/1/0/all/0/1">S. Buitink</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Cataldo_M/0/1/0/all/0/1">M. Cataldo</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Clark_B/0/1/0/all/0/1">B. A. Clark</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Curtis_Ginsberg_Z/0/1/0/all/0/1">Z. Curtis-Ginsberg</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Connolly_A/0/1/0/all/0/1">A. Connolly</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Dasgupta_P/0/1/0/all/0/1">P. Dasgupta</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kockere_S/0/1/0/all/0/1">S. de Kockere</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Vries_K/0/1/0/all/0/1">K. D. de Vries</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Deaconu_C/0/1/0/all/0/1">C. Deaconu</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+DuVernois_M/0/1/0/all/0/1">M. A. DuVernois</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Glaser_C/0/1/0/all/0/1">C. Glaser</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Hallgren_A/0/1/0/all/0/1">A. Hallgren</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Hallmann_S/0/1/0/all/0/1">S. Hallmann</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Hanson_J/0/1/0/all/0/1">J. C. Hanson</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Hendricks_B/0/1/0/all/0/1">B. Hendricks</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Hornhuber_C/0/1/0/all/0/1">C. Hornhuber</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Hughes_K/0/1/0/all/0/1">K. Hughes</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Karle_A/0/1/0/all/0/1">A. Karle</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kelley_J/0/1/0/all/0/1">J. L. Kelley</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kravchenko_I/0/1/0/all/0/1">I. Kravchenko</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Krebs_R/0/1/0/all/0/1">R. Krebs</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Lahmann_R/0/1/0/all/0/1">R. Lahmann</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Latif_U/0/1/0/all/0/1">U. Latif</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Mammo_J/0/1/0/all/0/1">J. Mammo</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Meyers_Z/0/1/0/all/0/1">Z. S. Meyers</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Michaels_K/0/1/0/all/0/1">K. Michaels</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Mulrey_K/0/1/0/all/0/1">K. Mulrey</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Nelles_A/0/1/0/all/0/1">A. Nelles</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Novikov_A/0/1/0/all/0/1">A. Novikov</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Nozdrina_A/0/1/0/all/0/1">A. Nozdrina</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Oberla_E/0/1/0/all/0/1">E. Oberla</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Oeyen_B/0/1/0/all/0/1">B. Oeyen</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Pan_Y/0/1/0/all/0/1">Y. Pan</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Pandya_H/0/1/0/all/0/1">H. Pandya</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Plaisier_I/0/1/0/all/0/1">I. Plaisier</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Punsuebsay_N/0/1/0/all/0/1">N. Punsuebsay</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Pyras_L/0/1/0/all/0/1">L. Pyras</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Ryckbosch_D/0/1/0/all/0/1">D. Ryckbosch</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Scholten_O/0/1/0/all/0/1">O. Scholten</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Seckel_D/0/1/0/all/0/1">D. Seckel</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Seikh_M/0/1/0/all/0/1">M. F. H. Seikh</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Smith_D/0/1/0/all/0/1">D. Smith</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Southall_D/0/1/0/all/0/1">D. Southall</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Torres_J/0/1/0/all/0/1">J. Torres</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Toscano_S/0/1/0/all/0/1">S. Toscano</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Tosi_D/0/1/0/all/0/1">D. Tosi</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Broeck_D/0/1/0/all/0/1">D. J. Van Den Broeck</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Eijndhoven_N/0/1/0/all/0/1">N. van Eijndhoven</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Vieregg_A/0/1/0/all/0/1">A. G. Vieregg</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Welling_C/0/1/0/all/0/1">C. Welling</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Williams_D/0/1/0/all/0/1">D. R. Williams</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Wissel_S/0/1/0/all/0/1">S. Wissel</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Young_R/0/1/0/all/0/1">R. Young</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Zink_A/0/1/0/all/0/1">A. Zink</a>

Over the last 25 years, radiowave detection of neutrino-generated signals,
using cold polar ice as the neutrino target, has emerged as perhaps the most
promising technique for detection of extragalactic ultra-high energy neutrinos
(corresponding to neutrino energies in excess of 0.01 Joules, or $10^{17}$
electron volts). During the summer of 2021 and in tandem with the initial
deployment of the Radio Neutrino Observatory in Greenland (RNO-G), we conducted
radioglaciological measurements at Summit Station, Greenland to refine our
understanding of the ice target. We report the result of one such measurement,
the radio-frequency electric field attenuation length $L_alpha$. We find an
approximately linear dependence of $L_alpha$ on frequency with the best fit of
the average field attenuation for the upper 1500 m of ice: $langle L_alpha
rangle = big( (1154 pm 121) – (0.81 pm 0.14) (nu/$MHz$)big)$ m for
frequencies $nu in [145 – 350]$ MHz.

Over the last 25 years, radiowave detection of neutrino-generated signals,
using cold polar ice as the neutrino target, has emerged as perhaps the most
promising technique for detection of extragalactic ultra-high energy neutrinos
(corresponding to neutrino energies in excess of 0.01 Joules, or $10^{17}$
electron volts). During the summer of 2021 and in tandem with the initial
deployment of the Radio Neutrino Observatory in Greenland (RNO-G), we conducted
radioglaciological measurements at Summit Station, Greenland to refine our
understanding of the ice target. We report the result of one such measurement,
the radio-frequency electric field attenuation length $L_alpha$. We find an
approximately linear dependence of $L_alpha$ on frequency with the best fit of
the average field attenuation for the upper 1500 m of ice: $langle L_alpha
rangle = big( (1154 pm 121) – (0.81 pm 0.14) (nu/$MHz$)big)$ m for
frequencies $nu in [145 – 350]$ MHz.

http://arxiv.org/icons/sfx.gif