Additional Galactic Cepheids from the OGLE Survey. (arXiv:2007.07255v1 [astro-ph.SR]) <a href="http://arxiv.org/find/astro-ph/1/au:+Soszynski_I/0/1/0/all/0/1">I. Soszy&#x144;ski</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Udalski_A/0/1/0/all/0/1">A. Udalski</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Szymanski_M/0/1/0/all/0/1">M. K. Szyma&#x144;ski</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Pietrukowicz_P/0/1/0/all/0/1">P. Pietrukowicz</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Skowron_J/0/1/0/all/0/1">J. Skowron</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Skowron_D/0/1/0/all/0/1">D. Skowron</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Poleski_R/0/1/0/all/0/1">R. Poleski</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kozlowski_S/0/1/0/all/0/1">S. Koz&#x142;owski</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Mroz_P/0/1/0/all/0/1">P. Mr&#xf3;z</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Ulaczyk_K/0/1/0/all/0/1">K. Ulaczyk</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Rybicki_K/0/1/0/all/0/1">K. Rybicki</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Iwanek_P/0/1/0/all/0/1">P. Iwanek</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Wrona_M/0/1/0/all/0/1">M. Wrona</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Gromadzki_M/0/1/0/all/0/1">M. Gromadzki</a> We report on the results of a comprehensive search for Cepheid variable stars in the fields photometrically monitored by the OGLE Galaxy Variability Survey. We identify 742 Cepheids not included in the first release of the OGLE Collection of Galactic Cepheids and reclassify several dozen previously published variables. The upgraded collection comprises 1974Read More →

Near-infrared emission lines trace the state-independent accretion disc wind of the black hole transient MAXI J1820+070. (arXiv:2007.07257v1 [astro-ph.HE]) <a href="http://arxiv.org/find/astro-ph/1/au:+Sanchez_Sierras_J/0/1/0/all/0/1">Javier S&#xe1;nchez-Sierras</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Munoz_Darias_T/0/1/0/all/0/1">Teo Mu&#xf1;oz-Darias</a> The black hole transient MAXI J1820+070 displayed optical P-Cyg profiles and other wind-related emission line features during the hard state of its discovery outburst. We present near-infrared (nIR) spectroscopy covering the different accretion states of the system during this event. Our 8-epoch data set (VLT/X-shooter) reveals strong variability in the properties of the nIR emission lines. This includes the presence of absorption troughs and extended emission line wings with kinetic properties that are remarkably similar to those inferred from the windRead More →

High-resolution X-ray spectroscopy of the stellar wind in Vela X-1 during a flare. (arXiv:2007.07260v1 [astro-ph.HE]) <a href="http://arxiv.org/find/astro-ph/1/au:+Lomaeva_M/0/1/0/all/0/1">M. Lomaeva</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Grinberg_V/0/1/0/all/0/1">V. Grinberg</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Guainazzi_M/0/1/0/all/0/1">M. Guainazzi</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Hell_N/0/1/0/all/0/1">N. Hell</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bianchi_S/0/1/0/all/0/1">S. Bianchi</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kuhnel_M/0/1/0/all/0/1">M. Bissinger n&#xe9; K&#xfc;hnel</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Furst_F/0/1/0/all/0/1">F. F&#xfc;rst</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kretschmar_P/0/1/0/all/0/1">P. Kretschmar</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Martinez_Chicharro_M/0/1/0/all/0/1">M. Mart&#xed;nez-Chicharro</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Martinez_Nunez_S/0/1/0/all/0/1">S. Mart&#xed;nez-N&#xfa;&#xf1;ez</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Torrejon_J/0/1/0/all/0/1">J.M. Torrej&#xf3;n</a> We present a $sim$130 ks observation of the prototypical wind-accreting, high-mass X-ray binary Vela X-1 collected with XMM-Newton at orbital phases between 0.12 and 0.28. A strong flare took place during the observation that allows us to investigate the reaction of the clumpy stellar wind to the increased X-ray irradiation. To examine the wind’s reactionRead More →

Gravitational Waves from Neutrino Asymmetries in Core-Collapse Supernovae. (arXiv:2007.07261v1 [astro-ph.HE]) <a href="http://arxiv.org/find/astro-ph/1/au:+Vartanyan_D/0/1/0/all/0/1">David Vartanyan</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Burrows_A/0/1/0/all/0/1">Adam Burrows</a> We present a broadband spectrum of gravitational waves from core-collapse supernovae (CCSNe) sourced by neutrino emission asymmetries for a series of full 3D simulations. The associated gravitational wave strain probes the long-term secular evolution of CCSNe and small-scale turbulent activity and provides insight into the geometry of the explosion. For non-exploding models, both the neutrino luminosity and the neutrino gravitational waveform will encode information about the spiral SASI. The neutrino memory will be detectable for a wide range of progenitor masses for a galactic event. Our results can beRead More →

Binary Fraction Indicators in Resolved Stellar Populations and Supernova Type Ratios. (arXiv:2007.07263v1 [astro-ph.SR]) <a href="http://arxiv.org/find/astro-ph/1/au:+Stanway_E/0/1/0/all/0/1">E. R. Stanway</a> (Warwick), <a href="http://arxiv.org/find/astro-ph/1/au:+Eldridge_J/0/1/0/all/0/1">J. J. Eldridge</a> (Auckland), <a href="http://arxiv.org/find/astro-ph/1/au:+Chrimes_A/0/1/0/all/0/1">A. A. Chrimes</a> (Warwick) The binary fraction of a stellar population can have pronounced effects on its properties, and in particular the number counts of different massive star types, and the relative subtype rates of the supernovae which end their lives. Here we use binary population synthesis models with a binary fraction that varies with initial mass to test the effects on resolved stellar populations and supernovae, and ask whether these can constrain the poorly-known binary fraction in different mass andRead More →

What does FRB light-curve variability tell us about the emission mechanism?. (arXiv:2007.07265v1 [astro-ph.HE]) <a href="http://arxiv.org/find/astro-ph/1/au:+Beniamini_P/0/1/0/all/0/1">Paz Beniamini</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kumar_P/0/1/0/all/0/1">Pawan Kumar</a> A few fast radio bursts’ (FRBs) light-curves have exhibited large intrinsic modulations of their flux on extremely short ($t_{rm r}sim 10mu$s) time scales, compared to pulse durations ($t_{rm FRB}sim1$ms). Light-curve variability timescales, the small ratio of rise time of the flux to pulse duration, and the spectro-temporal correlations in the data constrain the compactness of the source and the mechanism responsible for the powerful radio emission. The constraints are strongest when radiation is produced far ($gtrsim 10^{10}$cm) from the compact object. We describe different physical set-upsRead More →

Teaching neural networks to generate Fast Sunyaev Zel’dovich Maps. (arXiv:2007.07267v1 [astro-ph.CO]) <a href="http://arxiv.org/find/astro-ph/1/au:+Thiele_L/0/1/0/all/0/1">Leander Thiele</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Villaescusa_Navarro_F/0/1/0/all/0/1">Francisco Villaescusa-Navarro</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Spergel_D/0/1/0/all/0/1">David N. Spergel</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Nelson_D/0/1/0/all/0/1">Dylan Nelson</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Pillepich_A/0/1/0/all/0/1">Annalisa Pillepich</a> The thermal Sunyaev-Zel’dovich (tSZ) and the kinematic Sunyaev-Zel’dovich (kSZ) effects trace the distribution of electron pressure and momentum in the hot Universe. These observables depend on rich multi-scale physics, thus, simulated maps should ideally be based on calculations that capture baryonic feedback effects such as cooling, star formation, and other complex processes. In this paper, we train deep convolutional neural networks with a U-Net architecture to map from the three-dimensional distribution of dark matter to electron density, momentumRead More →

AGN dichotomy beyond radio loudness: a Gaussian Mixture Model analysis. (arXiv:2007.07271v1 [astro-ph.GA]) <a href="http://arxiv.org/find/astro-ph/1/au:+Beaklini_P/0/1/0/all/0/1">Pedro P.B.Beaklini</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Quadros_A/0/1/0/all/0/1">Allan V.C.Quadros</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Avellar_M/0/1/0/all/0/1">Marcio G.B. de Avellar</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Dantas_M/0/1/0/all/0/1">Maria L.L. Dantas</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Cancado_A/0/1/0/all/0/1">Andr&#xe9; L.F. Can&#xe7;ado</a> Since the discovery of radio emissions from Quasi-stellar Objects (QSOs), also known as quasars, they have been traditionally subdivided as radio-loud and radio-quiet sources. Whether such division is a misleading effect from a highly heterogeneous single population of objects, or real has yet to be answered. Such dichotomy has been evidenced by observations of the flux ratio between the optical and radio emissions (usually $B$-band and 5 GHz). Evidence of two populations in quasarsRead More →

The destruction and recreation of the X-ray corona in a changing-look Active Galactic Nucleus. (arXiv:2007.07275v1 [astro-ph.HE]) <a href="http://arxiv.org/find/astro-ph/1/au:+Ricci_C/0/1/0/all/0/1">C. Ricci</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kara_E/0/1/0/all/0/1">E. Kara</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Loewenstein_M/0/1/0/all/0/1">M. Loewenstein</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Trakhtenbrot_B/0/1/0/all/0/1">B. Trakhtenbrot</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Arcavi_I/0/1/0/all/0/1">I. Arcavi</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Remillard_R/0/1/0/all/0/1">R. Remillard</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Fabian_A/0/1/0/all/0/1">A. C. Fabian</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Gendreau_K/0/1/0/all/0/1">K. C. Gendreau</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Arzoumanian_Z/0/1/0/all/0/1">Z. Arzoumanian</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Li_R/0/1/0/all/0/1">R. Li</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Ho_L/0/1/0/all/0/1">L. C. Ho</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+MacLeod_C/0/1/0/all/0/1">C. L. MacLeod</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Cackett_E/0/1/0/all/0/1">E. Cackett</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Altamirano_D/0/1/0/all/0/1">D. Altamirano</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Gandhi_P/0/1/0/all/0/1">P. Gandhi</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Kosec_P/0/1/0/all/0/1">P. Kosec</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Pasham_D/0/1/0/all/0/1">D. Pasham</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Steiner_J/0/1/0/all/0/1">J. Steiner</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Chan_C/0/1/0/all/0/1">C.-H. Chan</a> We present the drastic transformation of the X-ray properties of the active galactic nucleus 1ES 1927+654, following a changing-look event. After the optical/UV outburst the power-law component, producedRead More →

Magnetic field transport in compact binaries. (arXiv:2007.07277v1 [astro-ph.HE]) <a href="http://arxiv.org/find/astro-ph/1/au:+Scepi_N/0/1/0/all/0/1">Nicolas Scepi</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Lesur_G/0/1/0/all/0/1">Geoffroy Lesur</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Dubus_G/0/1/0/all/0/1">Guillaume Dubus</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Jacquemin_Ide_J/0/1/0/all/0/1">Jonatan Jacquemin-Ide</a> Dwarf novae (DNe) and low mass X-ray binaries (LMXBs) show eruptions that are thought to be due to a thermal-viscous instability in their accretion disk. These eruptions provide constraints on angular momentum transport mechanisms. We explore the idea that angular momentum transport could be controlled by the dynamical evolution of the large scale magnetic field. We study the impact of different prescriptions for the magnetic field evolution on the dynamics of the disk. This is a first step in confronting the theory of magnetic fieldRead More →

Global Analysis of the TRAPPIST Ultra-Cool Dwarf Transit Survey. (arXiv:2007.07278v1 [astro-ph.EP]) <a href="http://arxiv.org/find/astro-ph/1/au:+Lienhard_F/0/1/0/all/0/1">F. Lienhard</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Queloz_D/0/1/0/all/0/1">D. Queloz</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Gillon_M/0/1/0/all/0/1">M. Gillon</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Burdanov_A/0/1/0/all/0/1">A. Burdanov</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Delrez_L/0/1/0/all/0/1">L. Delrez</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Ducrot_E/0/1/0/all/0/1">E. Ducrot</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Handley_W/0/1/0/all/0/1">W. Handley</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Jehin_E/0/1/0/all/0/1">E. Jehin</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Murray_C/0/1/0/all/0/1">C. A. Murray</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Triaud_A/0/1/0/all/0/1">A. H. M. J. Triaud</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Gillen_E/0/1/0/all/0/1">E. Gillen</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Mortier_A/0/1/0/all/0/1">A. Mortier</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Rackham_B/0/1/0/all/0/1">B. V. Rackham</a> We conducted a global analysis of the TRAPPIST Ultra-Cool Dwarf Transit Survey – a prototype of the SPECULOOS transit search conducted with the TRAPPIST-South robotic telescope in Chile from 2011 to 2017 – to estimate the occurrence rate of close-in planets such as TRAPPIST-1b orbiting ultra-cool dwarfs. For this purpose,Read More →

The Science Case for Spacecraft Exploration of the Uranian Satellites. (arXiv:2007.07284v1 [astro-ph.IM]) <a href="http://arxiv.org/find/astro-ph/1/au:+Cartwright_R/0/1/0/all/0/1">Richard J. Cartwright</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Beddingfield_C/0/1/0/all/0/1">Chloe B. Beddingfield</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Nordheim_T/0/1/0/all/0/1">Tom Nordheim</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Elder_C/0/1/0/all/0/1">Catherine Elder</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Grundy_W/0/1/0/all/0/1">Will Grundy</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bramson_A/0/1/0/all/0/1">Ali Bramson</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Sori_M/0/1/0/all/0/1">Michael Sori</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Pappalardo_R/0/1/0/all/0/1">Robert Pappalardo</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Neveu_M/0/1/0/all/0/1">Marc Neveu</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Burr_D/0/1/0/all/0/1">Devon Burr</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Ermakov_A/0/1/0/all/0/1">Anton Ermakov</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Roser_J/0/1/0/all/0/1">Joe Roser</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Castillo_Rogez_J/0/1/0/all/0/1">Julie Castillo-Rogez</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Showalter_M/0/1/0/all/0/1">Mark Showalter</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Cohen_I/0/1/0/all/0/1">Ian Cohen</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Turtle_Z/0/1/0/all/0/1">Zibi Turtle</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Hofstadter_M/0/1/0/all/0/1">Mark Hofstadter</a> The five classical Uranian moons are possible ocean worlds that exhibit bizarre geologic landforms, hinting at recent surface-interior communication. However, Uranus’ classical moons, as well as its ring moons and irregular satellites, remain poorly understood. We assert that a Flagship-classRead More →

The history of dynamics and stellar feedback revealed by the HI filamentary structure in the disk of the Milky Way. (arXiv:2007.07285v1 [astro-ph.GA]) <a href="http://arxiv.org/find/astro-ph/1/au:+Soler_J/0/1/0/all/0/1">J.D. Soler</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Beuther_H/0/1/0/all/0/1">H. Beuther</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Syed_J/0/1/0/all/0/1">J. Syed</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Wang_Y/0/1/0/all/0/1">Y. Wang</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Anderson_L/0/1/0/all/0/1">L.D. Anderson</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Glover_S/0/1/0/all/0/1">S.C.O. Glover</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Hennebelle_P/0/1/0/all/0/1">P. Hennebelle</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Heyer_M/0/1/0/all/0/1">M. Heyer</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Henning_T/0/1/0/all/0/1">Th. Henning</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Izquierdo_A/0/1/0/all/0/1">A.F. Izquierdo</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Klessen_R/0/1/0/all/0/1">R.S. Klessen</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Linz_H/0/1/0/all/0/1">H. Linz</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+McClure_Griffiths_N/0/1/0/all/0/1">N.M. McClure-Griffiths</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Ott_J/0/1/0/all/0/1">J. Ott</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Ragan_S/0/1/0/all/0/1">S.E. Ragan</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Rugel_M/0/1/0/all/0/1">M. Rugel</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Schneider_N/0/1/0/all/0/1">N. Schneider</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Smith_R/0/1/0/all/0/1">R.J. Smith</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Sormani_M/0/1/0/all/0/1">M.C. Sormani</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Stil_J/0/1/0/all/0/1">J.M. Stil</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Urquhart_J/0/1/0/all/0/1">J.S. Urquhart</a> We present a study of the filamentary structure in the emission from the neutral atomic hydrogen (HI) at 21 cmRead More →

The Atacama Cosmology Telescope: DR4 Maps and Cosmological Parameters. (arXiv:2007.07288v1 [astro-ph.CO]) <a href="http://arxiv.org/find/astro-ph/1/au:+Aiola_S/0/1/0/all/0/1">Simone Aiola</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Calabrese_E/0/1/0/all/0/1">Erminia Calabrese</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Maurin_L/0/1/0/all/0/1">Lo&#xef;c Maurin</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Naess_S/0/1/0/all/0/1">Sigurd Naess</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Schmitt_B/0/1/0/all/0/1">Benjamin L. Schmitt</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Abitbol_M/0/1/0/all/0/1">Maximilian H. Abitbol</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Addison_G/0/1/0/all/0/1">Graeme E. Addison</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Ade_P/0/1/0/all/0/1">Peter A. R. Ade</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Alonso_D/0/1/0/all/0/1">David Alonso</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Amiri_M/0/1/0/all/0/1">Mandana Amiri</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Amodeo_S/0/1/0/all/0/1">Stefania Amodeo</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Angile_E/0/1/0/all/0/1">Elio Angile</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Austermann_J/0/1/0/all/0/1">Jason E. Austermann</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Baildon_T/0/1/0/all/0/1">Taylor Baildon</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Battaglia_N/0/1/0/all/0/1">Nick Battaglia</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Beall_J/0/1/0/all/0/1">James A. Beall</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bean_R/0/1/0/all/0/1">Rachel Bean</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Becker_D/0/1/0/all/0/1">Daniel T. Becker</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bond_J/0/1/0/all/0/1">J Richard Bond</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bruno_S/0/1/0/all/0/1">Sarah Marie Bruno</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Calafut_V/0/1/0/all/0/1">Victoria Calafut</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Campusano_L/0/1/0/all/0/1">Luis E. Campusano</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Carrero_F/0/1/0/all/0/1">Felipe Carrero</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Chesmore_G/0/1/0/all/0/1">Grace E. Chesmore</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Cho%2E_H/0/1/0/all/0/1">Hsiao-mei Cho.</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Choi_S/0/1/0/all/0/1">Steve K. Choi</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Clark_S/0/1/0/all/0/1">Susan E.Read More →

The Atacama Cosmology Telescope: A Measurement of the Cosmic Microwave Background Power Spectra at 98 and 150 GHz. (arXiv:2007.07289v1 [astro-ph.CO]) <a href="http://arxiv.org/find/astro-ph/1/au:+Choi_S/0/1/0/all/0/1">Steve K. Choi</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Hasselfield_M/0/1/0/all/0/1">Matthew Hasselfield</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Ho_S/0/1/0/all/0/1">Shuay-Pwu Patty Ho</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Koopman_B/0/1/0/all/0/1">Brian Koopman</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Lungu_M/0/1/0/all/0/1">Marius Lungu</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Abitbol_M/0/1/0/all/0/1">Maximilian H. Abitbol</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Addison_G/0/1/0/all/0/1">Graeme E. Addison</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Ade_P/0/1/0/all/0/1">Peter A. R. Ade</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Aiola_S/0/1/0/all/0/1">Simone Aiola</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Alonso_D/0/1/0/all/0/1">David Alonso</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Amiri_M/0/1/0/all/0/1">Mandana Amiri</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Amodeo_S/0/1/0/all/0/1">Stefania Amodeo</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Angile_E/0/1/0/all/0/1">Elio Angile</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Austermann_J/0/1/0/all/0/1">Jason E. Austermann</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Baildon_T/0/1/0/all/0/1">Taylor Baildon</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Battaglia_N/0/1/0/all/0/1">Nick Battaglia</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Beall_J/0/1/0/all/0/1">James A. Beall</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bean_R/0/1/0/all/0/1">Rachel Bean</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Becker_D/0/1/0/all/0/1">Daniel T. Becker</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bond_J/0/1/0/all/0/1">J Richard Bond</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bruno_S/0/1/0/all/0/1">Sarah Marie Bruno</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Calabrese_E/0/1/0/all/0/1">Erminia Calabrese</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Calafut_V/0/1/0/all/0/1">Victoria Calafut</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Campusano_L/0/1/0/all/0/1">Luis E. Campusano</a>, <aRead More →

The Atacama Cosmology Telescope: arcminute-resolution maps of 18,000 square degrees of the microwave sky from ACT 2008-2018 data combined with Planck. (arXiv:2007.07290v1 [astro-ph.IM]) <a href="http://arxiv.org/find/astro-ph/1/au:+Naess_S/0/1/0/all/0/1">Sigurd Naess</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Aiola_S/0/1/0/all/0/1">Simone Aiola</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Austermann_J/0/1/0/all/0/1">Jason E. Austermann</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Battaglia_N/0/1/0/all/0/1">Nick Battaglia</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Beall_J/0/1/0/all/0/1">James A. Beall</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Becker_D/0/1/0/all/0/1">Daniel T. Becker</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Bond_R/0/1/0/all/0/1">Richard J. Bond</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Calabrese_E/0/1/0/all/0/1">Erminia Calabrese</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Choi_S/0/1/0/all/0/1">Steve K. Choi</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Cothard_N/0/1/0/all/0/1">Nicholas F. Cothard</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Crowley_K/0/1/0/all/0/1">Kevin T. Crowley</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Darwish_O/0/1/0/all/0/1">Omar Darwish</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Datta_R/0/1/0/all/0/1">Rahul Datta</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Denison_E/0/1/0/all/0/1">Edward V. Denison</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Devlin_M/0/1/0/all/0/1">Mark Devlin</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Duell_C/0/1/0/all/0/1">Cody J. Duell</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Duff_S/0/1/0/all/0/1">Shannon M. Duff</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Duivenvoorden_A/0/1/0/all/0/1">Adriaan J. Duivenvoorden</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Dunkley_J/0/1/0/all/0/1">Jo Dunkley</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Dunner_R/0/1/0/all/0/1">Rolando D&#xfc;nner</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Fox_A/0/1/0/all/0/1">Anna E. Fox</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Gallardo_P/0/1/0/all/0/1">Patricio A. Gallardo</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Halpern_M/0/1/0/all/0/1">Mark Halpern</a>,Read More →

A simple, heuristic derivation of the Balescu-Lenard kinetic equation for stellar systems. (arXiv:2007.07291v1 [astro-ph.GA]) <a href="http://arxiv.org/find/astro-ph/1/au:+Hamilton_C/0/1/0/all/0/1">Chris Hamilton</a> (DAMTP, Cambridge) The unshielded nature of gravity means that stellar systems are inherently inhomogeneous. As a result, stars do not move in straight lines. This obvious fact severely complicates the kinetic theory of stellar systems because position and velocity turn out to be poor coordinates with which to describe stellar orbits – instead, one must use angle-action variables. Moreover, the slow relaxation of star clusters and galaxies can be enhanced or suppressed by collective interactions (‘polarisation’ effects) involving many stars simultaneously. These collective effects are also present inRead More →

Inverse energy transfer in decaying, three dimensional, nonhelical magnetic turbulence due to magnetic reconnection. (arXiv:2007.07325v1 [astro-ph.CO]) <a href="http://arxiv.org/find/astro-ph/1/au:+Bhat_P/0/1/0/all/0/1">Pallavi Bhat</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Zhou_M/0/1/0/all/0/1">Muni Zhou</a>, <a href="http://arxiv.org/find/astro-ph/1/au:+Loureiro_N/0/1/0/all/0/1">Nuno F. Loureiro</a> It has been recently shown numerically that there exists an inverse transfer of magnetic energy in decaying, nonhelical, magnetically dominated, magnetohydrodynamic turbulence in 3-dimensions (3D). We suggest that magnetic reconnection is the underlying physical mechanism responsible for this inverse transfer. In the two-dimensional (2D) case, the inverse transfer is easily inferred to be due to smaller magnetic islands merging to form larger ones via reconnection. We find that the scaling behaviour is similar between the 2D and the 3DRead More →

Do the TRAPPIST-1 Planets Have Atmospheres? A new study takes a hard look at the TRAPPIST-1 system to determine if its seven exoplanets could have viable atmospheres – with encouraging results! The post Do the TRAPPIST-1 Planets Have Atmospheres? appeared first on Universe Today. Universe Today Go to SourceRead More →

A Stellar Stream of Stars, Stolen from Another Galaxy Modern professional astronomers aren’t much like astronomers of old. They don’t spend every suitable evening with their eyes glued to a telescope’s eyepiece. You might be more likely to find them in front of a super-computer, working with AI and deep learning methods. One group of researchers employed those methods to find a whole new … Continue reading “A Stellar Stream of Stars, Stolen from Another Galaxy” The post A Stellar Stream of Stars, Stolen from Another Galaxy appeared first on Universe Today. Universe Today Go to SourceRead More →