Rise of the Super Telescopes: The James Webb Space Telescope

Rise of the Super Telescopes: The James Webb Space Telescope

We humans have an insatiable hunger to understand the Universe. As Carl Sagan said, “Understanding is Ecstasy.” But to understand the Universe, we need better and better ways to observe it. And that means one thing: big, huge, enormous telescopes.
In this series we’ll look at 6 of the world’s Super Telescopes:

The James Webb Space Telescope

The James Webb Space Telescope“>James Webb Space Telescope (JWST, or the Webb) may be the most eagerly anticipated of the Super Telescopes. Maybe because it has endured a tortured path on its way to being built. Or maybe because it’s different than the other Super Telescopes, what with it being 1.5 million km (1 million miles) away from Earth once it’s operating.

The JWST will do its observing while in what’s called a halo orbit at L2, a sort of gravitationally neutral point 1.5 million km from Earth. Image: NASA/JWST

If you’ve been following the drama behind the Webb, you’ll know that cost overruns almost caused it to be cancelled. That would’ve been a real shame.

The JWST has been brewing since 1996, but has suffered some bumps along the road. That road and its bumps have been discussed elsewhere, so what follows is a brief rundown.

Initial estimates for the JWST were a $1.6 billion price tag and a launch date of 2011. But the costs ballooned, and there were other problems. This caused the House of Representatives in the US to move to cancel the project in 2011. However, later that same year, US Congress reversed the cancellation. Eventually, the final cost of the Webb came to $8.8 billion, with a launch date set for October, 2018. That means the JWST’s first light will be much sooner than the other Super Telescopes.

The business end of the James Webb Space Telescope is its 18-segment primary mirror. The gleaming, gold-coated beryllium mirror has a collecting area of 25 square meters. Image: NASA/Chris Gunn

The Webb was envisioned as a successor to the Hubble Space Telescope, which has been in operation since 1990. But the Hubble is in Low Earth Orbit, and has a primary mirror of 2.4 meters. The JWST will be located in orbit at the LaGrange 2 point, and its primary mirror will be 6.5 meters. The Hubble observes in the near ultraviolet, visible, and near infrared spectra, while the Webb will observe in long-wavelength (orange-red) visible light, through near-infrared to the mid-infrared. This has some important implications for the science yielded by the Webb.

The Webb’s Instruments

The James Webb is built around four instruments:

  • The Near-Infrared Camera (NIRCam)
  • The Near-Infrared Spectrograph (NIRSpec)
  • The Mid-Infrared Instrument(MIRI)
  • The Fine Guidance Sensor/ Near InfraRed Imager and Slitless Spectrograph (FGS/NIRISS)

This image shows the wavelengths of the infrared spectrum that Webb’s instruments can observe. Image: NASA/JWST

The NIRCam is Webb’s primary imager. It will observe the formation of the earliest stars and galaxies, the population of stars in nearby galaxies, Kuiper Belt Objects, and young stars in the Milky Way. NIRCam is equipped with coronagraphs, which block out the light from bright objects in order to observe dimmer objects nearby.

NIRSpec will operate in a range from 0 to 5 microns. Its spectrograph will split the light into a spectrum. The resulting spectrum tells us about an objects, temperature, mass, and chemical composition. NIRSpec will observe 100 objects at once.

MIRI is a camera and a spectrograph. It will see the redshifted light of distant galaxies, newly forming stars, objects in the Kuiper Belt, and faint comets. MIRI’s camera will provide wide-field, broadband imaging that will rank up there with the astonishing images that Hubble has given us a steady diet of. The spectrograph will provide physical details of the distant objects it will observe.

The Fine Guidance Sensor part of FGS/NIRISS will give the Webb the precision required to yield high-quality images. NIRISS is a specialized instrument operating in three modes. It will investigate first light detection, exoplanet detection and characterization, and exoplanet transit spectroscopy.

The Science

The over-arching goal of the JWST, along with many other telescopes, is to understand the Universe and our origins. The Webb will investigate four broad themes:

  • First Light and Re-ionization: In the early stages of the Universe, there was no light. The Universe was opaque. Eventually, as it cooled, photons were able to travel more freely. Then, probably hundreds of millions of years after the Big Bang, the first light sources formed: stars. But we don’t know when, or what types of stars.
  • How Galaxies Assemble: We’re accustomed to seeing stunning images of the grand spiral galaxies that exist in the Universe today. But galaxies weren’t always like that. Early galaxies were often small and clumpy. How did they form into the shapes we see today?
  • The Birth of Stars and Protoplanetary Systems: The Webb’s keen eye will peer straight through clouds of dust that ‘scopes like the Hubble can’t see through. Those clouds of dust are where stars are forming, and their protoplanetary systems. What we see there will tell us a lot about the formation of our own Solar System, as well as shedding light on many other questions.
  • Planets and the Origins of Life: We now know that exoplanets are common. We’ve found thousands of them orbiting all types of stars. But we still know very little about them, like how common atmospheres are, and if the building blocks of life are common.

These are all obviously fascinating topics. But in our current times, one of them stands out among the others: Planets and the Origins of Life.

The recent discovery the TRAPPIST 1 system has people excited about possibly discovering life in another solar system. TRAPPIST 1 has 7 terrestrial planets, and 3 of them are in the habitable zone. It was huge news in February 2017. The buzz is still palpable, and people are eagerly awaiting more news about the system. That’s where the JWST comes in.

One big question around the TRAPPIST system is “Do the planets have atmospheres?” The Webb can help us answer this.

The NIRSpec instrument on JWST will be able to detect any atmospheres around the planets. Maybe more importantly, it will be able to investigate the atmospheres, and tell us about their composition. We will know if the atmospheres, if they exist, contain greenhouse gases. The Webb may also detect chemicals like ozone and methane, which are biosignatures and can tell us if life might be present on those planets.

You could say that if the James Webb were able to detect atmospheres on the TRAPPIST 1 planets, and confirm the existence of biosignature chemicals there, it will have done its job already. Even if it stopped working after that. That’s probably far-fetched. But still, the possibility is there.

Launch and Deployment

The science that the JWST will provide is extremely intriguing. But we’re not there yet. There’s still the matter of JWST’s launch, and it’s tricky deployment.

The JWST’s primary mirror is much larger than the Hubble’s. It’s 6.5 meters in diameter, versus 2.4 meters for the Hubble. The Hubble was no problem launching, despite being as large as a school bus. It was placed inside a space shuttle, and deployed by the Canadarm in low earth orbit. That won’t work for the James Webb.

This image shows the Hubble Space Telescope being held above the shuttle’s cargo bay by the Canadian-built Remote Manipulator System (RMS) arm, or Canadarm. A complex operation, but not as complex as JWST’s deployment. Image: NASA

The Webb has to be launched aboard a rocket to be sent on its way to L2, it’s eventual home. And in order to be launched aboard its rocket, it has to fit into a cargo space in the rocket’s nose. That means it has to be folded up.

The mirror, which is made up of 18 segments, is folded into three inside the rocket, and unfolded on its way to L2. The antennae and the solar cells also need to unfold.

Unlike the Hubble, the Webb needs to be kept extremely cool to do its work. It has a cryo-cooler to help with that, but it also has an enormous sunshade. This sunshade is five layers, and very large.

We need all of these components to deploy for the Webb to do its thing. And nothing like this has been tried before.

The Webb’s launch is only 7 months away. That’s really close, considering the project almost got cancelled. There’s a cornucopia of science to be done once it’s working.

But we’re not there yet, and we’ll have to go through the nerve-wracking launch and deployment before we can really get excited.

The post Rise of the Super Telescopes: The James Webb Space Telescope appeared first on Universe Today.

Universe Today
Go to Source

Powered by WPeMatico

1st SLS 2nd Stage Arrives at Cape for NASA’s Orion Megarocket Moon Launch in 2018

1st SLS 2nd Stage Arrives at Cape for NASA’s Orion Megarocket Moon Launch in 2018

Composite view of the interim cryogenic propulsion stage (ICPS) for first flight of NASA’s Space Launch System (SLS) rocket at United Launch Alliance manufacturing facility in Decatur, Alabama in December 2016 (left) and arrival of ICPS in a canister aboard the firm’s Delta Mariner barge on March 7, 2017 (right). Credits: ULA (left) and Ken Kremer/kenkremer.com (right)

PORT CANAVERAL – Bit by bit, piece by piece, the first of NASA’s SLS megarockets designed to propel American astronauts on deep space missions back to the Moon and beyond to Mars is at last coming together on the Florida Space Coast. And the first big integrated piece of actual flight hardware – the powerful second stage named the Interim Cryogenic Propulsion Stage (ICPS) – has just arrived by way of barge today (Mar. 7) at Port Canaveral, Fl.

The ICPS will propel NASA’s new Orion crew capsule on its maiden uncrewed mission around the Moon – currently slated for blastoff on the maiden SLS monster rocket on the Exploration Mission-1 (EM-1) mission late next year.

SLS-1/Orion EM-1 will launch from pad 39B at NASA’s Kennedy Space Center in late 2018. The SLS will be the most powerful rocket in world history.

NASA is currently evaluating whether to add a crew of 2 astronauts to the SLS-1 launch which would results in postponing the inaugural liftoff into 2019 – http://www.universetoday.com/133724/snasa-studies-whether-to-add-2-astronauts-to-1st-slsorion-launch-to-moon-in-2019/.

The interim cryogenic propulsion stage (ICPS) for first flight of NASA’s Space Launch System (SLS) rocket arrived at Port Canaveral, Florida on March 7, 2017 loaded inside a shipping canister (right) aboard the ULA Delta Mariner barge that set sail from Decatur, Alabama a week ago. The ICPS shared the shipping voyage along with a ULA Delta IV first stage rocket core seen at left. Credit: Ken Kremer/kenkremer.com

The SLS upper stage – designed and built by United Launch Alliance (ULA) and Boeing – arrived safely by way of the specially-designed ship called the Delta Mariner early Tuesday morning, Mar. 7, into the channel of Port Canaveral, Florida – as witnessed by this author.

“We are proud to be working with The Boeing Company and NASA to further deep space exploration!” ULA said in a statement.

Major assembly of the ICPS was completed at ULA’s Decatur, Alabama, manufacturing facility in December 2016.

The interim cryogenic propulsion stage (ICPS) for the first flight of NASA’s Space Launch System (SLS) rocket has arrived by way of barge at Cape Canaveral Air Force Station in Florida on March 7, 2017. The ICPS will be moved to United Launch Alliance’s Delta IV Operation Center at the Cape for processing for the SLS-1/Orion EM-1 launch currently slated for late 2018 launch from pad 39B at NASA’s Kennedy Space Center. Credit: ULA

The ICPS is the designated upper stage for the first maiden launch of the initial Block 1 version of the SLS.

It is based on ULA’s Delta Cryogenic Second Stage which has successfully flown numerous times on the firm’s Delta IV family of rockets.

The ULA Delta Mariner barge arriving in Port Canaveral, Florida on March 7, 2017 after transporting the interim cryogenic propulsion stage (ICPS) hardware for the first flight of NASA’s Space Launch System (SLS) rocket from Decatur, Alabama. SLS-1 launch from the Kennedy Space Center is slated for late 2018. Credit: Ken Kremer/kenkremer.com

The ICPS was loaded onto the Delta Mariner and departed Decatur last week to began its sea going voyage of more than 2,100 miles (3300 km). The barge trip normally takes 8 to 10 days.

“ULA has completed production on the interim cryogenic propulsion stage (ICPS) flight hardware for NASA’s Space Launch System and it’s on the way to Cape Canaveral aboard the Mariner,” ULA noted in a statement last week.

The 312-foot-long (95-meter-long) ULA ship docked Tuesday morning at the wharf at Port Canaveral to prepare for off loading from the roll-on, roll-off vessel.

The Delta Mariner can travel on both rivers and open seas and navigate in waters as shallow as nine feet.

“ICPS, the first integrated SLS hardware to arrive at the Cape, will provide in-space propulsion for the SLS rocket on its Exploration Mission-1 (EM-1) mission,” according to ULA.

The next step for the upper stage is ground transport to United Launch Alliance’s Delta IV Operation Center on Cape Canaveral Air Force Station in Florida for further testing and processing before being moved to the Kennedy Space Center.

ULA will deliver the ICPS to NASA in mid-2017.

“It will be the first integrated piece of SLS hardware to arrive at the Cape and undergo final processing and testing before being moved to Ground Systems Development Operations at NASA’s Kennedy Space Center,” said NASA officials.

“The ICPS is a liquid oxygen/liquid hydrogen-based system that will provide the thrust needed to send the Orion spacecraft and 13 secondary payloads beyond the moon before Orion returns to Earth.”

The upper stage is powered by a single RL-10B-2 engine fueled by liquid hydrogen and oxygen and generates 24,750 pounds of thrust. It measures 44 ft 11 in (13.7 m ) in length and 16 ft 5 in (5 m) in width.

The interim cryogenic propulsion stage (ICPS) for the first flight of NASA’s Space Launch System (SLS) rocket as it completed major assembly at United Launch Alliance in Decatur, Alabama in December 2016. The ICPS just arrived by way of barge at Cape Canaveral Air Force Station in Florida on March 7, 2017. It will propel the Orion EM-1 crew module around the Moon. The SLS-1/Orion EM-1 launch is currently slated for late 2018 launch from NASA’s Kennedy Space Center. Credit: ULA

All major elements of the SLS will be assembled for flight inside the high bay of NASA’s iconic Vehicle Assembly Building which is undergoing a major overhaul to accommodate the SLS. The VAB high bay was extensively refurbished to convert it from Space Shuttle to SLS assembly and launch operations.

For SLS-1 the mammoth booster will launch in its initial 70-metric-ton (77-ton) Block 1 configuration with a liftoff thrust of 8.4 million pounds – more powerful than NASA’s Saturn V moon landing rocket.

The next Delta IV rocket launching with a Delta Cryogenic Second Stage is tentatively slated for March 14 from pad 37 at the Cape.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

File photo of the ULA Delta Mariner barge arriving in Port Canaveral, Florida after transporting rocket hardware from Decatur, Alabama

The post 1st SLS 2nd Stage Arrives at Cape for NASA’s Orion Megarocket Moon Launch in 2018 appeared first on Universe Today.

Universe Today
Go to Source

Powered by WPeMatico

What Did Cassini Teach Us?

What Did Cassini Teach Us?

Ask me my favorite object in the Solar System, especially to see through a telescope, and my answer is always the same: Saturn.

Saturn is this crazy, ringed world, different than any other place we’ve ever seen. And in a small telescope, you can really see the ball of the planet, you can see its rings. It’s one thing to see a world like this from afar, a tiny jumping image in a telescope. To really appreciate and understand a place like Saturn, you’ve got to visit.

And thanks to NASA’s Cassini spacecraft, that’s just what we’ve been doing for the last 13 years. Take a good close look at this amazing ringed planet and its moons, and studying it from every angle.

Space Probes

Cassini orbiting Saturn. Credit: NASA

Throughout this article, I’m going to regale you with the amazing discoveries made by Cassini at Saturn. What it taught us, and what new mysteries it uncovered.

NASA’s Cassini spacecraft was launched from Earth on October 15, 1997. Instead of taking the direct route, it made multiple flybys of Venus, a flyby of Earth and a flyby of Jupiter. Each one of these close encounters boosted Cassini’s velocity, allowing it to make the journey with less escape velocity from Earth.

It arrived at Saturn on July 1st, 2004 and began its science operations shortly after that. The primary mission lasted 4 years, and then NASA extended its mission two more times. The first ending in 2010, and the second due to end in 2017. But more on that later.

Before Cassini, we only had flybys of Saturn. NASA’s Pioneer 11, and Voyagers 1 and 2 both zipped past the planet and its moons, snapping pictures as they went.

But Cassini was here to stay. To orbit around and around the planet, taking photos, measuring magnetic fields, and studying chemicals.

For Saturn itself, Cassini was able to make regular observations of the planet as it passed through entire seasons. This allowed it to watch how the weather and atmospheric patterns changed over time. The spacecraft watched lightning storms dance through the cloudtops at night.

This series of images from NASA’s Cassini spacecraft shows the development of the largest storm seen on the planet since 1990. These true-color and composite near-true-color views chronicle the storm from its start in late 2010 through mid-2011, showing how the distinct head of the storm quickly grew large but eventually became engulfed by the storm’s tail. Credit: NASA/JPL-Caltech/Space Science Institute

Two highlights. In 2010, Cassini watched a huge storm erupt in the planet’s northern hemisphere. This storm dug deep into Saturn’s lower atmosphere, dredging up ice from a layer 160 kilometers below and mixing it onto the surface. This was the first time that astronomers were able to directly study this water ice on Saturn, which is normally in a layer hidden from view.

Natural color images taken by NASA’s Cassini wide-angle camera, showing the changing appearance of Saturn’s north polar region between 2012 and 2016.. Credit: NASA/JPL-Caltech/Space Science Institute/Hampton University

The second highlight, of course, is the massive hexagonal storm churning away in Saturn’s northern pole. This storm was originally seen by Voyager, but Cassini brought its infrared and visible wavelength instruments to bear.

Why a hexagon? That’s still a little unclear, but it seems like when you rotate fluids of different speeds, you get multi-sided structures like this.

Cassini showed how the hexagonal storm has changed in color as Saturn moved through its seasons.

This is one of my favorite images sent back by Cassini. It’s the polar vortex at the heart of the hexagon. Just look at those swirling clouds.

The polar vortex, in all its glory. Credit: NASA/JPL-Caltech/Space Science Institute

Now, images of Saturn itself are great and all, but there was so much else for Cassini to discover in the region.

Cassini studied Saturn’s rings in great detail, confirming that they’re made up of ice particles, ranging in size as small a piece of dust to as large as a mountain. But the rings themselves are actually quite thin. Just 10 meters thick in some places. Not 10 kilometers, not 10 million kilometers, 10 meters, 30 feet.

The spacecraft helped scientists uncover the source of Saturn’s E-ring, which is made up of fresh icy particles blasting out of its moon Enceladus. More on that in a second too.

Vertical structures, among the tallest seen in Saturn’s main rings, rise abruptly from the edge of Saturn’s B ring to cast long shadows on the ring in this image taken by NASA’s Cassini spacecraft two weeks before the planet’s August 2009 equinox. Credit: NASA/JPL/Space Science Institute

Here’s another one of my favorite images of the mission. You’re looking at strange structures in Saturn’s B-ring. Towering pillars of ring material that rise 3.5 kilometers above the surrounding area and cast long shadows. What is going on here?

They’re waves, generated in the rings and enhanced by nearby moons. They move and change over time in ways we’ve never been able to study anywhere else in the Solar System.

Daphnis, one of Saturn’s ring-embedded moons, is featured in this view, kicking up waves as it orbits within the Keeler gap. Credit: NASA/JPL-Caltech/Space Science Institute

Cassini has showed us that Saturn’s rings are a much more dynamic place than we ever thought. Some moons are creating rings, other moons are absorbing or distorting them. The rings generate bizarre spoke patterns larger than Earth that come and go because of electrostatic charges.

Speaking of moons, I’m getting to the best part. What did Cassini find at Saturn’s moons?

Let’s start with Titan, Saturn’s largest moon. Before Cassini, we only had a few low resolution images of this fascinating world. We knew Titan had a dense atmosphere, filled with nitrogen, but little else.

Cassini was carrying a special payload to assist with its exploration of Titan: the Huygens lander. This tiny probe detached from Cassini just before its arrival at Saturn, and parachuted through the cloudtops on January 14, 2005, analyzing all the way. Huygens returned images of its descent through the atmosphere, and even images of the freezing surface of Titan.

Huygen’s view of Titan. Credit: ESA/NASA/JPL/University of Arizona

But Cassini’s own observations of Titan took the story even further. Instead of a cold, dead world, Cassini showed that it has active weather, as well as lakes, oceans and rivers of hydrocarbons. It has shifting dunes of pulverized rock hard water ice.

If there’s one place that needs exploring even further, it’s Titan. We should return with sailboats, submarines and rovers to better explore this amazing place.

A view of Mimas from the Cassini spacecraft. Credit: NASA/JPL/Space Science Institute

We learned, without a shadow of a doubt, that Mimas absolutely looks like the Death Star. No question. But instead of a megalaser, this moon has a crater a third of its own size.

Saturn’s moon Iapetus. Image credit: NASA/JPL/SSI

Cassini helped scientists understand why Saturn’s moon Iapetus has one light side and one dark side. The moon is tidally locked to Saturn, its dark side always leading the moon in orbit. It’s collecting debris from another Saturnian moon, Phoebe, like bugs hitting the windshield of a car.

Perhaps the most exciting discovery that Cassini made during its mission is the strange behavior of Saturn’s moon Enceladus. The spacecraft discovered that there are jets of water ice blasting out of the moon’s southern pole. An ocean of liquid water, heated up by tidal interactions with Saturn, is spewing out into space.

And as you know, wherever we find water on Earth, we find life. We thought that water in the icy outer Solar System would be hard to reach, but here it is, right at the surface, venting into space, and waiting for us to come back and investigate it further.

Icy water vapor geysers erupting from fissures on Enceladus. Credit: NASA/JPL

On September 15, 2017, the Cassini mission will end. How do we know it’s going to happen on this exact date? Because NASA is going to crash the spacecraft into Saturn, killing it dead.

That seems a little harsh, doesn’t it, especially for a spacecraft which has delivered so many amazing images to us over nearly two decades of space exploration? And as we’ve seen from NASA’s Opportunity rover, still going, 13 years longer than anticipated. Or the Voyagers, out in the depths of the void, helping us explore the boundary between the Solar System and interstellar space. These things are built to last.

The problem is that the Saturnian system contains some of the best environments for life in the Solar System. Saturn’s moon Enceladus, for example, has geysers of water blasting out into space.

Cassini spacecraft is covered in Earth-based bacteria and other microscopic organisms that hitched a ride to Saturn, and would be glad to take a nice hot Enceladian bath. All they need is liquid water and a few organic chemicals to get going, and Enceladus seems to have both.

NASA feels that it’s safer to end Cassini now, when they can still control it, than to wait until they lose communication or run out of propellant in the future. The chances that Cassini will actually crash into an icy moon and infect it with our Earth life are remote, but why take the risk?
For the last few months, Cassini has been taking a series of orbits to prepare itself for its final mission. Starting in April, it’ll actually cross inside the orbit of the rings, getting closer and closer to Saturn. And on September 15th, it’ll briefly become a meteor, flashing through the upper atmosphere of Saturn, gone forever.

This graphic illustrates the Cassini spacecraft’s trajectory, or flight path, during the final two phases of its mission. The view is toward Saturn as seen from Earth. The 20 ring-grazing orbits are shown in gray; the 22 grand finale orbits are shown in blue. The final partial orbit is colored orange. Image credit: NASA/JPL-Caltech/Space Science Institute

Even in its final moments, Cassini is going to be sciencing as hard as it can. We’ll learn more about the density of consistency of the rings close to the planet. We’ll learn more about the planet’s upper atmosphere, storms and clouds with the closest possible photographs you can take.

And then it’ll all be over. The perfect finale to one of the most successful space missions in human history. A mission that revealed as many new mysteries about Saturn as it helped us answer. A mission that showed us not only a distant alien world, but our own planet in perspective in this vast Solar System. I can’t wait to go back.

How have the photos from Cassini impacted your love of astronomy? Let me know your thoughts in the comments.

The post What Did Cassini Teach Us? appeared first on Universe Today.

Universe Today
Go to Source

Powered by WPeMatico

How Long is Day on Mercury?

How Long is Day on Mercury?

Mercury is one of the most unusual planets in our Solar System, at least by the standards of us privileged Earthlings. Despite being the closest planet to our Sun, it is not the hottest (that honor goes to Venus). And because of its virtually non-existence atmosphere and slow rotation, temperatures on its surface range from being extremely hot to extremely cold.

Equally unusual is the diurnal cycle on Mercury – i.e. the cycle of day and night. A single year lasts only 88 days on Mercury, but thanks again to its slow rotation, a day lasts twice as long! That means that if you could stand on the surface of Mercury, it would take a staggering 176 Earth days for the Sun to rise, set and rise again to the same place in the sky just once!

Distance and Orbital Period:

Mercury is the closest planet to our Sun, but it also has the most eccentric orbit (0.2056) of any of the Solar Planets. This means that while its average distance (semi-major axis) from the Sun is 57,909,050 km (35,983,015 mi) or 0.387 AUs, this ranges considerably – from 46,001,200 km (2,8583,820 mi) at perihelion (closet) to 69,816,900 km (43,382,210  mi) at aphelion (farthest).

A timelapse of Mercury transiting across the face of the Sun. Credit: NASA

Because of this proximity, Mercury has a rapid orbital period, which varies depending on where it is in its orbit. Naturally, it moves fastest when it is at its closest to the Sun, and slowest when it is farthest. On average, its orbital velocity is 47.362 km/s (29.43 mi/s), which means it takes only 88 days to complete a single orbit of the Sun.

Astronomers used to suspect that Mercury was tidally locked to the Sun, meaning that it always showed the same face to the Sun – similar to how the Moon is tidally locked to the Earth. But radar-Doppler measurements obtained in 1965 demonstrated that Mercury is actually rotating very slowly compared to the Sun.

Sidereal vs. Solar Day:

Based on data obtained by these radar measurements, Mercury is now known to be in 3:2 orbital resonance with the Sun. This means that the planet completes three rotations on its axis for every two orbits it makes around the Sun. At it’s current rotational velocity – 3.026 m/s, or 10.892 km/h (6.77 mph) – it takes Mercury 58.646 days to complete a single rotation on its axis.

While this might lead some to conclude that a single day on Mercury is about 58 Earth days – thus making the length of a day and year correspond to the same 3:2 ratio – this would be inaccurate. Due to its rapid orbital velocity and slow sidereal rotation, a Solar Day on Mercury (the time it takes for the Sun to return to the same place in the sky) is actually 176 days.

In that respect, the ratio of days to years on Mercury is actually 1:2. The only places that are exempt to this day and night cycle are the polar regions. The cratered northern polar region, for example, exists in a state of perpetual shadow. Temperatures in these craters are also cool enough that significant concentrations of water ice can exist in stable form.

For over 20 years, scientists believed that radar-bright images from Mercury’s northern polar regions might indicate the presence of water ice there. In November of 2012, NASA’s MESSENGER probe examined the northern polar region using its neutron spectrometer and laser altimeter and confirmed the presence of both water ice and organic molecules.

View of Mercury’s north pole. based on MESSENGER probe data, showing polar deposits of water ice. Credit: NASA/JHUAPL/Carnegie Institute of Science/NAIC/Arecibo Observatory

Yes, as if Mercury weren’t strange enough, it turns out that a single day on Mercury lasts as long as two years! Just another oddity for a planet that likes to keep things really hot, really cold, and is really eccentric.

We’ve written many articles about Mercury for Universe Today. Here’s How Long is Day on the Other Planets?, Which Planet has the Longest Day?, How Long is a Day on Venus?, How Long is a Day on Earth?, How Long is a Day on the Moon?, How Long is a Day on Mars?, How Long is a Day on Jupiter?, How Long is a Day on Saturn?, How Long is a Day on Uranus?, How Long is a Day on Neptune?, and How Long is a Day on Pluto?

If you’d like more info on Mercury, check out NASA’s Solar System Exploration Guide, and here’s a link to NASA’s MESSENGER Misson Page.

We’ve also recorded an entire episode of Astronomy Cast all about Mercury. Listen here, Episode 49: Mercury.


The post How Long is Day on Mercury? appeared first on Universe Today.

Universe Today
Go to Source

Powered by WPeMatico

Ancient Stardust Sheds Light on the First Stars

Ancient Stardust Sheds Light on the First Stars

Astronomers have used ALMA to detect a huge mass of glowing stardust in a galaxy seen when the Universe was only four percent of its present age. This galaxy was observed shortly after its formation and is the most distant galaxy in which dust has been detected. This observation is also the most distant detection of oxygen in the Universe. These new results provide brand-new insights into the birth and explosive deaths of the very first stars.
ESO News Feed
Go to Source

Powered by WPeMatico

Exploring Titan with Balloons and Landers

Exploring Titan with Balloons and Landers

Last week – from Monday, February 27th to Wednesday, March 1st – NASA hosted the “Planetary Science Vision 2050 Workshop” at their headquarters in Washington, DC. In the course of the many presentations, speeches and panel discussions, NASA’s shared its many plans for the future of space exploration with the international community.

Among the more ambitious of these was a proposal to explore Titan using an aerial explorer and a lander. Building upon the success of the ESA’s Cassini-Huygen mission, this plan would involve a balloon that would explore Titan’s surface from low altitude, along with a Mars Pathfinder-style mission that would explore the surface.

Ultimately, the goal a mission to Titan would be to explore the rich organic chemical environment the moon has, which presents a unique opportunity for planetary researchers. For some time, scientists have understood that Titan’s surface and atmosphere have an abundance of organic compounds and all the prebiotic chemistry necessary for life to function.

Artist depiction of Huygens landing on Titan. Credit: ESA

The presentation, which was titled “Aerial Mobility : The Key to Exploring Titan’s Rich Chemical Diversity” was chaired by Ralph Lorenz from the Johns Hopkins Applied Physics Laboratory, and co-chaired by Elizabeth Turtle (also from John Hopkins APL) and Jason Barnes from the Dept. of Physics at the University of Idaho. As Lorenz explained during the presentation, Titan presents some exciting opportunities for a next-generation mission:

“Titan offers complex carbon-rich chemistry in abundance on an ice-dominated ocean world. However, the most astrobiologically interesting sites need mobile in situ exploration, much as rovers are performing at Mars. Titan’s thick atmosphere and low-gravity environment facilitates regional mobility to home in on the specific locations where liquid water and abundant organics have interacted.”

For this reason, the exploration of Titan has been a scientific goal for decades. The only question is how best to go about exploring Titan’s unique environment. During previous Decadal Surveys – such as the Campaign Strategy Working Group (CSWG) on Prebiotic Chemistry in the Outer Solar System, of which Lorenz was a contributor – has suggested that a mobile aerial vehicle (such as an airship or a balloon) would well-suited to the task.

However, such vehicles would be unable to study Titan’s methane lakes, which are one of the most exciting draws of the moon as far as research into prebiotic chemistry goes. What’s more, an aerial vehicle would not be able to conduct in-situ chemical analysis of the surface, much like what the Mars Exploration Rovers (Spirit, Opportunity and Curiosity) have been doing on Mars – and with immense results!

The ESA’s TALISE (Titan Lake In-situ Sampling Propelled Explorer) on the left, and NASA’s Titan Mare Explorer (TiME) on the right. Credit: bisbos.com

At the same time, Lorenz and his colleagues examined concepts for the exploration of Titan’s hydrocarbon seas – like the proposed Titan Mare Explorer (TiME) capsule. As one of several finalists of NASA’s 2010 Discovery competition, this concept called for the deployment of nautical robot to Titan in the coming decades, where it would study its methane lakes to learn more about the methane cycle and search for signs of organic life.

While such a proposal would be cost-effective and presents some very exciting opportunities for research, it also has some limitations. For instance, during the 2020s-2030s, Titan’s northern hemisphere will be experiencing its winter season; at which point the thickness of its atmosphere will make direct-to-Earth communications and Earth views impossible. On top of that, a nautical vehicle would preclude the exploration of Titan’s land surfaces.

These offer some of the most likely prospects for studying Titan’s advanced chemical evolution, including Titan’s dune sands. As a windswept region, this area likely has material deposited from all over Titan and may also contain aqueously altered materials. Much as the Mars Pathfinder landing site was selected so it could collect samples from a wide area, such as location would be an ideal site for a lander.

As such, Lorenz and his colleagues advocated the type of mission that was articulated in the 2007 Flagship Study, which called for a Montgolfière balloon for regional exploration and a Pathfinder-like lander. This would provide the opportunity to conduct surface imaging at resolutions that are impossible from orbit (due to the thick atmosphere) as well as investigating the surface chemistry and interior structure of the moon.

Artist’s conception of a possible structure for underground liquid reservoirs on Saturn moon’s Titan. Credit: ESA/ATG medialab

So while the balloon would gather high-resolution geographical data of the moon, the lander could conduct seismological surveys that would characterize the thickness of the ice above Titan’s internal water ocean. However, a lander mission would be limited in terms of range, and the surface of Titan presents problems for mobility. This would make multiple landers, or a relocatable lander, the most desired option.

This mission concept would also take advantage of several technological advances that have been made in recent years. As Lorenz explained:

“Heavier-than-air mobility at Titan is in fact highly efficient, moreover, improvements in autonomous aircraft in the two decades since the CSWG make such exploration a realistic prospect. Multiple in-situ landers delivered by an aerial vehicle like an airplane or a lander with aerial mobility to access multiple sites, would provide the most desirable scientific capability, highly relevant to the themes of origins, workings, and life.”

Lorenz, Turtle and Barnes will also be presenting these findings at the upcoming 48th Lunar and Planetary Science Conference – which will be taking place from March 20th to 24th in The Woodlands, Texas. There they will be joined by additional members of the Johns Hopkins APL and the University of Idaho, as well as panelists from NASA’s Goddard Space Flight Center, Pennsylvania State University, and Honeybee Robotics.

Updated maps of Titan, based on the Cassini imaging science subsystem. Credit: NASA/JPL/Space Science Institute

However, addressing some additional challenges not raised at the 2050 Vision Workshop, they will be presenting a slight twist on their idea. Instead of a balloon and multiple landers, they will present a mission concept involving a “Dragonfly” qaudcopter. This four-rotor vehicle would be able to take advantage of Titan’s thick atmosphere and low gravity to obtain samples and determine the surface composition in multiple geological settings.

This concept also incorporates a lot of recent advances in technology, which include modern control electronics and advances in commerical unmanned aerial vehicle (UAV) designs. On top of that, a quadcopter would do away with chemically-powered retrorockets and could power-up between flights, giving it a potentially much longer lifespan.

These and other concepts for exploring Saturn’s moon Titan are sure to gain traction in the coming years. Given the many mysteries locked away on this world – with includes abundant water ice, prebiotic chemistry, a methane cycle, and a subsurface ocean that is likely to be a prebiotic environment – it is certainly a popular target for scientific research.

Further Reading: USRA, USRA (2)

The post Exploring Titan with Balloons and Landers appeared first on Universe Today.

Universe Today
Go to Source

Powered by WPeMatico

Rise of the Super Telescopes: The Thirty Meter Telescope

Rise of the Super Telescopes: The Thirty Meter Telescope

As Carl Sagan said, “Understanding is Ecstasy.” But in order to understand the Universe, we need better and better ways to observe it. And that means one thing: big, huge, enormous telescopes.

In this series, we’ll look at six Super Telescopes being built:

The Thirty Meter Telescope

The Thirty Meter Telescope (TMT) is being built by an international group of countries and institutions, like a lot of Super Telescopes are. In fact, they’re proud of pointing out that the international consortium behind the TMT represents almost half of the world’s population; China, India, the USA, Japan, and Canada. The project needs that many partners to absorb the cost; an estimated $1.5 billion.

The heart of any of the world’s Super Telescopes is the primary mirror, and the TMT is no different. The primary mirror for the TMT is, obviously, 30 meters in diameter. It’s a segmented design consisting of 492 smaller mirrors, each one a 1.4 meter hexagon.

The light collecting capability of the TMT will be 10 times that of the Keck Telescope, and more than 144 times that of the Hubble Space Telescope.

But the TMT is more than just an enormous ‘light bucket.’ It also excels with other capabilities that define a super telescope’s effectiveness. One of those is what’s called diffraction-limited spatial resolution (DLSR).

An illustration of the segmented primary mirror of the Thirty Meter Telescope. Image Courtesy TMT International Observatory

When a telescope is pointed at distant objects that appear close together, the light from both can scatter enough to make the two objects appear as one. Diffraction-limited spatial resolution means that when a ‘scope is observing a star or other object, none of the light from that object is scattered by defects in the telescope. The TMT will more easily distinguish objects that are close to each other. When it comes to DLSR, the TMT will exceed the Keck by a factor of 3, and will exceed the Hubble by a factor of 10 at some wavelengths.

Crucial to the function of large, segmented mirrors like the TMT is active optics. By controlling the shape and position of each segment, active optics allows the primary mirror to compensate for changes in wind, temperature, or mechanical stress on the telescope. Without active optics, and its sister technology adaptive optics, which compensates for atmospheric disturbance, any telescope larger than about 8 meters would not function properly.

The TMT will operate in the near-ultraviolet, visible, and near-infrared wavelengths. It will be smaller than the European Extremely Large Telescope (E-ELT), which will have a 39 meter primary mirror. The E-ELT will operate in the optical and infrared wavelengths.

The world’s Super Telescopes are behemoths. Not just in the size of their mirrors, but in their mass. The TMT’s moving mass will be about 1,420 tonnes. Moving the TMT quickly is part of the design of the TMT, because it must respond quickly when something like a supernova is spotted. The detailed science case calls for the TMT to acquire a new target within 5 to 10 minutes.

This requires a complex computer system to coordinate the science instruments, the mirrors, the active optics, and the adaptive optics. This was one of the initial challenges of the TMT project. It will allow the TMT to respond to transient phenomena like supernovae when spotted by other telescopes like the Large Synoptic Survey Telescope.

The Science

The TMT will investigate most of the important questions in astronomy and cosmology today. Here’s an overview of major topics that the TMT will address:

  • The Nature of Dark Matter
  • The Physics of Extreme Objects like Neutron Stars
  • Early galaxies and Cosmic Reionization
  • Galaxy Formation
  • Super-Massive Black Holes
  • Exploration of the Milky Way and Nearby Galaxies
  • The Birth and Early Lives of Stars and Planets
  • Time Domain Science: Supernovae and Gamma Ray Bursts
  • Exo-planets
  • Our Solar System

This is a comprehensive list of topics, to be sure. It leaves very little out, and is a testament to the power and effectiveness of the TMT.

The raw power of the TMT is not in question. Once in operation it will advance our understanding of the Universe on multiple fronts. But the actual location of the TMT could still be in question.

Where Will the TMT Be Built?

The original location for the TMT was Mauna Kea, the 4,200 meter summit in Hawaii. Mauna Kea is an excellent location, and is the home of several telescopes, most notably the Keck Observatory, the Gemini Telescope, the Subaru Telescope, the Canada-France-Hawaii Telescope, and the James Clerk Maxwell Telescope. Mauna Kea is also the site of the westernmost antenna of the Very Long Baseline Array.

The top of Mauna Kea is a prime site for telescopes, as shown in this image. Image Courtesy Mauna Kea Observatories

The dispute between some of the Hawaiian people and the TMT has been well-documented elsewhere, but the basic complaint about the TMT is that the top of Mauna Kea is sacred land, and they would like the TMT to be built elsewhere.

The organizations behind the TMT would still like it to be built at Mauna Kea, and a legal process is unfolding around the dispute. During that process, they identified several possible alternate sites for the telescope, including La Palma in the Canary Islands. Universe Today contacted TMT Observatory Scientist Christophe Dumas, PhD., about the possible relocation of the TMT to another site.

Dr. Dumas told us that “Mauna Kea remains the preferred location for the TMT because of its superb observing conditions, and because of the synergy with other TMT partner facilities already present on the mountain. Its very high elevation of almost 14,000 feet makes it the premier astronomical site in the northern hemisphere. The sky above Mauna Kea is very stable, which allows very sharp images to be obtained. It has also excellent transparency, low light pollution and stable cold temperatures that improves sensitivity for observations in the infrared.”

The preferred secondary site at La Palma is home to over 10 other telescopes, but would relocation to the Canary Islands affect the science done by the TMT? Dr. Dumas says that the Canary Islands site is excellent as well, with similar atmospheric characteristics to Mauna Kea, including stability, transparency, darkness, and fraction of clear-nights.

The Gran Telescopio Canarias (Great Canary Telescope) is the largest ‘scope currently at La Palma. At 10m diameter, it would be dwarfed by the TMT. Image: By Pachango – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6880933

As Dr. Dumas explains, “La Palma is at a lower elevation site and on average warmer than Mauna Kea. These two factors will reduce TMT sensitivity at some wavelengths in the infrared region of the spectrum.”

Dr. Dumas told Universe Today that this reduced sensitivity in the infrared can be overcome somewhat by scheduling different observing tasks. “This specific issue can be partly mitigated by implementing an adaptive scheduling of TMT observations, to match the execution of the most demanding infrared programs with the best atmospheric conditions above La Palma.”

Court Proceedings End

On March 3rd, 44 days of court hearings into the TMT wrapped up. In that time, 71 people testified for and against the TMT being constructed on Mauna Kea. Those against the telescope say that the site is sacred land and shouldn’t have any more telescope construction on it. Those for the TMT spoke in favor of the science that the TMT will deliver to everyone, and the education opportunities it will provide to Hawaiians.

Though construction has been delayed, and people have gone to court to have the project stopped, it seems like the TMT will definitely be built—somewhere. The funding is in place, the design is finalized, and manufacturing of the components is underway. The delays mean that the TMT’s first light is still uncertain, but once we get there, the TMT will be another game-changer, just like the world’s other Super Telescopes.

The post Rise of the Super Telescopes: The Thirty Meter Telescope appeared first on Universe Today.

Universe Today
Go to Source

Powered by WPeMatico